Articles | Volume 25, issue 6
https://doi.org/10.5194/acp-25-3541-2025
https://doi.org/10.5194/acp-25-3541-2025
Research article
 | 
25 Mar 2025
Research article |  | 25 Mar 2025

On the estimation of stratospheric age of air from correlations of multiple trace gases

Florian Voet, Felix Ploeger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Höpfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela I. Hegglin

Viewed

Total article views: 767 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
494 95 178 767 75 17 26
  • HTML: 494
  • PDF: 95
  • XML: 178
  • Total: 767
  • Supplement: 75
  • BibTeX: 17
  • EndNote: 26
Views and downloads (calculated since 05 Sep 2024)
Cumulative views and downloads (calculated since 05 Sep 2024)

Viewed (geographical distribution)

Total article views: 767 (including HTML, PDF, and XML) Thereof 767 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 31 Mar 2025
Download
Short summary
This study refines estimates of the stratospheric “age of air”, a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Share
Altmetrics
Final-revised paper
Preprint