Articles | Volume 25, issue 4
https://doi.org/10.5194/acp-25-2725-2025
https://doi.org/10.5194/acp-25-2725-2025
Research article
 | 
03 Mar 2025
Research article |  | 03 Mar 2025

Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States

Shuai Li, Haolin Wang, and Xiao Lu

Viewed

Total article views: 797 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
454 173 170 797 65 16 20
  • HTML: 454
  • PDF: 173
  • XML: 170
  • Total: 797
  • Supplement: 65
  • BibTeX: 16
  • EndNote: 20
Views and downloads (calculated since 31 Jul 2024)
Cumulative views and downloads (calculated since 31 Jul 2024)

Viewed (geographical distribution)

Total article views: 797 (including HTML, PDF, and XML) Thereof 797 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Mar 2025
Download
Short summary
Summertime ozone–temperature sensitivity has decreased by 50 % from 3.0 ppbv per K in 1990 to 1.5 ppb per K in 2021 in the US. GEOS-Chem simulations show that anthropogenic nitrogen oxide emission reduction is the dominant driver of ozone–temperature sensitivity decline by influencing both temperature direct and temperature indirect processes. Reduced ozone–temperature sensitivity has decreased ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Share
Altmetrics
Final-revised paper
Preprint