Articles | Volume 25, issue 23
https://doi.org/10.5194/acp-25-18291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-18291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ammonia exchange flux over a tropical dry deciduous forest in the dry season in Thailand
Mao Xu
CORRESPONDING AUTHOR
Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Phuvasa Chanonmuang
Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
Hiroyuki Sase
Asia Center for Air Pollution Research, Niigata, Niigata 950-2144, Japan
Atsuyuki Sorimachi
Toyo University, Kawagoe, Saitama 350-8585, Japan
Syuichi Itahashi
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Kazuhide Matsuda
CORRESPONDING AUTHOR
Faculty of Agriculture Field Science Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Related authors
No articles found.
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
Atmos. Chem. Phys., 25, 13429–13452, https://doi.org/10.5194/acp-25-13429-2025, https://doi.org/10.5194/acp-25-13429-2025, 2025
Short summary
Short summary
Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in the CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from the Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO, and 12.4±4.8 PgCO2, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi
Biogeosciences, 19, 3247–3261, https://doi.org/10.5194/bg-19-3247-2022, https://doi.org/10.5194/bg-19-3247-2022, 2022
Short summary
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Cited articles
Aman, N., Panyametheekul, S., Pawarmart, I., Sudhibrabha, S., and Manomaiphiboon, K.: A visibility-based historical PM2.5 estimation for four decades (1981–2022) using machine learning in Thailand: Trends, meteorological normalization, and influencing factors using SHAP analysis, Aerosol Air Qual. Res., 25, 4, https://doi.org/10.1007/s44408-025-00007-z, 2025.
Amnuaylojaroen, T., Inkom, J., Janta, R., and Surapipith, V.: Long range transport of Southeast Asian PM2.5 pollution to northern Thailand during high biomass burning episodes, Sustainability, 12, 10049, https://doi.org/10.3390/su122310049, 2020.
Ban, S., Matsuda, K., Sato, K., and Ohizumi, T.: Long-term assessment of nitrogen deposition at remote EANET sites in Japan, Atmos. Environ., 146, 70–78, https://doi.org/10.1016/j.atmosenv.2016.04.015, 2016.
Ban, S., Matsuda, K., and Ohizumi, T.: A method estimating dry deposition for assessment of nitrogen load on forests in East Asia, Water Air Soil Pollut., 233, 417, https://doi.org/10.1007/s11270-022-05874-5, 2022.
Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., and Pleim, J. E.: Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model, Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, 2013.
Beachley, G. M., Fenn, M. E., Du, E., de Vries, W., Bauters, M., Bell, M. D., Kulshrestha, U. C., Schmitz, A., and Walker, J. T.: Monitoring nitrogen deposition in global forests, in: Atmospheric Nitrogen Deposition to Global Forests, edited by: Du, E. and de Vries, W., Elsevier, Amsterdam, Netherland, 17–38, https://doi.org/10.1016/B978-0-323-91140-5.00019-1, 2024.
Chanonmuang, P., Khummongkol, P., and Matsuda, K.: Dry deposition of SO2 over dry dipterocarp forest, Thailand, Sains Malays., 44, 317–323, https://doi.org/10.17576/jsm-2015-4403-02, 2015.
Chatani, S., Shimadera, H., Kitayama, K., and Nishina, K.: Numerical analysis of factors causing long-term trends and annual variations of sulfur and nitrogen deposition amount in Japan from 2000 to 2020, Asian J. Atmos. Environ., 19, 2, https://doi.org/10.1007/s44273-025-00052-5, 2025.
Chen, S., Chen, B., Wang, S., Sun, L., Shi, H., Liu, Z., Wang, Q., Li, H., Zhu, T., Li, D., Xia, Y., Zhao, Z., Wang, L., and Wang, L.: Spatiotemporal variations of atmospheric nitrogen deposition in China during 2008–2020, Atmos. Environ., 315, 120120, https://doi.org/10.1016/j.atmosenv.2023.120120, 2023.
EANET: Data Report 2020, https://monitoring.eanet.asia/document/public/download?cd=262 (last access: 19 May 2025), 2021.
EANET: Data Report 2023, https://monitoring.eanet.asia/document/public/download?cd=299 (last access: 19 May 2025), 2024.
Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., and Sawada, K.: Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008, Atmos. Environ., 45, 1259–1267, https://doi.org/10.1016/j.atmosenv.2010.12.003, 2011.
EPA: Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences, and Management Options: A Report of the EP A Science Advisory Board, https://nepis.epa.gov/Exe/ZyPDF.cgi/P100DD0K.PDF?Dockey=P100DD0K.PDF (last access: 19 May 2025), 2011.
Flechard, C. R., Massad, R.-S., Loubet, B., Personne, E., Simpson, D., Bash, J. O., Cooter, E. J., Nemitz, E., and Sutton, M. A.: Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange, Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, 2013.
Fu, X., Wang, S. X., Ran, L. M., Pleim, J. E., Cooter, E., Bash, J. O., Benson, V., and Hao, J. M.: Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model, Atmos. Chem. Phys., 15, 6637–6649, https://doi.org/10.5194/acp-15-6637-2015, 2015.
Galmarini, S., Makar, P., Clifton, O. E., Hogrefe, C., Bash, J. O., Bellasio, R., Bianconi, R., Bieser, J., Butler, T., Ducker, J., Flemming, J., Hodzic, A., Holmes, C. D., Kioutsioukis, I., Kranenburg, R., Lupascu, A., Perez-Camanyo, J. L., Pleim, J., Ryu, Y.-H., San Jose, R., Schwede, D., Silva, S., and Wolke, R.: Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models, Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, 2021.
Gessler, A., Rienks, M., and Rennenberg, H.: NH3 and NO2 fluxes between beech trees and the atmosphere – correlation with climatic and physiological parameters, New Phytol., 147, 539–560, https://doi.org/10.1046/j.1469-8137.2000.00712.x, 2000.
Hansen, K., Sørensen, L. L., Hertel, O., Geels, C., Skjøth, C. A., Jensen, B., and Boegh, E.: Ammonia emissions from deciduous forest after leaf fall, Biogeosciences, 10, 4577–4589, https://doi.org/10.5194/bg-10-4577-2013, 2013.
Hayashi, K., Matsuda, K., Takahashi, A., and Nakaya, K.: Atmosphere–forest exchange of ammoniacal nitrogen in a subalpine deciduous forest in central Japan during a summer week, Asian J. Atmos. Environ., 5, 134–143, https://doi.org/10.5572/ajae.2011.5.2.134, 2011.
Hayashi, K., Ono, K., Tokida, T., Takimoto, T., Mano, M., Miyata, A., and Matsuda, K.: Atmosphere–rice paddy exchanges of inorganic particles and relevant gases during a week in winter and a week in summer, J. Agric. Meteorol., 68, 55–68, https://doi.org/10.2480/agrmet.68.1.8, 2012.
Hayashi, K., Ono, K., Matsuda, K., Tokida, T., and Hasegawa, T.: Characteristics of atmosphere–rice paddy exchange of gaseous and particulate reactive nitrogen in terms of nitrogen input to a single-cropping rice paddy area in central Japan, Asian J. Atmos. Environ., 11, 202–216, https://doi.org/10.5572/ajae.2017.11.3.202, 2017.
Hayashi, K., Shibata, H., Oita, A., Nishina, K., Ito, A., Katagiri, K., Shindo, J., and Winiwarter, W.: Nitrogen budgets in Japan from 2000 to 2015: Decreasing trend of nitrogen loss to the environment and the challenge to further reduce nitrogen waste, Environ. Pollut., 286, 117559, https://doi.org/10.1016/j.envpol.2021.117559, 2021.
Husted, S. and Schjoerring, J. K.: Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity (interactions with leaf conductance and apoplastic NH4+ and H+ concentrations), Plant Physiol., 112, 67–74, https://doi.org/10.1104/pp.112.1.67, 1996.
Igarashi, Y., Kumagai, T., Yoshifuji, N., Sato, T., Tanaka, N., Tanaka, K., Suzuki, M., and Tantasirin, C.: Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand, Agr. For. Meteorol., 202, 1–10, https://doi.org/10.1016/j.agrformet.2014.11.013, 2015.
Ishida, A., Yamaji, K., Nakano, T., Ladpala, P., Popradit, A., Yoshimura, K., Saiki, S., Maeda, T., Yoshimura, J., Koyama, K., Diloksumpun, S., and Marod, D.: Comparative physiology of canopy tree leaves in evergreen and deciduous forests in lowland Thailand, Sci. Data, 10, 601, https://doi.org/10.1038/s41597-023-02468-6, 2023.
Jongenelen, T., van Zanten, M., Dammers, E., Wichink Kruit, R., Hensen, A., Geers, L., and Erisman, J. W.: Validation and uncertainty quantification of three state-of-the-art ammonia surface exchange schemes using NH3 flux measurements in a dune ecosystem, Atmos. Chem. Phys., 25, 4943–4963, https://doi.org/10.5194/acp-25-4943-2025, 2025.
Khoomsab, K., Khummongkol, P., and Matsuda, K.: Trends in sulfate dry deposition over mixed dipterocarp forest in Thailand using relaxed eddy accumulation method, Sains Malaysiana, 43, 369–375, 2014.
Kuriyama, K. and Hayashi, K.: Sustainable agriculture and the nitrogen issue, in: Economics of Sustainable Agriculture, edited by: Kuriyama, K., Global Environmental Studies, Springer, Singapore, https://doi.org/10.1007/978-981-96-3502-3_1, 2025.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020, 2020.
Liu, L., Zhang, X., Xu, W., Liu, X., Wei, J., Wang, Z., and Yang, Y.: Global estimates of dry ammonia deposition inferred from space measurements, Sci. Total Environ., 730, 139189, https://doi.org/10.1016/j.scitotenv.2020.139189, 2020.
Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., Khummongkol, P., Wangwongwatana, S., and Totsuka, T.: Ozone dry deposition above a tropical forest in the dry season in northern Thailand, Atmos. Environ., 39, 2571–2577, https://doi.org/10.1016/j.atmosenv.2005.01.011, 2005.
Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., and Ohizumi, T.: Deposition velocity of O3 and SO2 in the dry and wet season above a tropical forest in northern Thailand, Atmos. Environ., 40, 7557–7564, https://doi.org/10.1016/j.atmosenv.2006.07.003, 2006.
Matsuda, K., Fujimura, Y., Hayashi, K., Takahashi, A., and Nakaya, K.: Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan, Atmos. Environ., 44, 4582–4587, https://doi.org/10.1016/j.atmosenv.2010.08.015, 2010.
Matsuda, K., Sase, H., Murao, N., Fukazawa, T., Khoomsub, K., Chanonmuang, P., Visaratana, T., and Khummongkol, P.: Dry and wet deposition of elemental carbon on a tropical forest in Thailand, Atmos. Environ., 54, 282–287, https://doi.org/10.1016/j.atmosenv.2012.02.022, 2012.
Melman, E. A., Rutledge-Jonker, S., Braam, M., Frumau, K. F. A., Moene, A. F., Shapkalijevski, M., Vilà-Guerau de Arellano, J., and van Zanten, M. C.: Increasing complexity in Aerodynamic Gradient flux calculations inside the roughness sublayer applied on a two-year dataset, Agric. For. Meteorol., 355, 110107, https://doi.org/10.1016/j.agrformet.2024.110107, 2024.
Melman, E. A., Rutledge-Jonker, S., Frumau, K. F. A., Hensen, A., van Pul, W. A. J., Stolk, A. P., Wichink Kruit, R. J., and van Zanten, M. C.: Measurements and model results of a two-year dataset of ammonia exchange over a coniferous forest in the Netherlands, Atmos. Environ., 344, 120976, https://doi.org/10.1016/j.atmosenv.2024.120976, 2025.
Moene, A. F. and van Dam, J. C.: Transport in the atmosphere–vegetation–soil continuum, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139043137, 2014.
Murata, N., Ohta, S., Ishida, A., Kanzaki, M., Wachirinrat, C., Artchawakom, T., and Sase, H.: Comparison of soil depths between evergreen and deciduous forests as a determinant of their distribution, Northeast Thailand, J. For. Res., 14, 212–220, https://doi.org/10.1007/s10310-009-0127-7, 2009.
Murata, N., Ohta, S., Ishida, A., Kanzaki, M., Wachirinrat, C., Artchawakom, T., and Sase, H.: Soil depth and soil water regime in a catchment where tropical dry evergreen and deciduous forests coexist, J. For. Res., 17, 37–44, https://doi.org/10.1007/s10310-010-0248-z, 2011.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015.
Nakahara, S., Takagi, K., Sorimachi, A., Katata, G., and Matsuda, K.: Enhancement of dry deposition of PM2.5 nitrate in a cool temperate forest, Atmos. Environ., 212, 136–141, https://doi.org/10.1016/j.atmosenv.2019.05.053, 2019.
Neirynck, J., Kowalski, A. S., Carrara, A., and Ceulemans, R.: Driving forces for ammonia fluxes over mixed forest subjected to high deposition loads, Atmos. Environ., 39, 5013–5024, https://doi.org/10.1016/j.atmosenv.2005.05.027, 2005.
Nishina, K., Watanabe, M., Koshikawa, M. K., Takamatsu, T., Morino, Y., Nagashima, T., Soma, K., and Hayashi, S.: Varying sensitivity of mountainous streamwater base-flow NO concentrations to N deposition in the northern suburbs of Tokyo, Sci. Rep., 7, 7701, https://doi.org/10.1038/s41598-017-08111-w, 2017.
Nishina, K., Ito, A., Zhou, F., Yan, X., Hayashi, S., and Winiwarter, W.: Historical trends of riverine nitrogen loading from land to the East China Sea: a model-based evaluation, Environ. Res. Commun., 3, 085005, https://doi.org/10.1088/2515-7620/ac1ce8, 2021.
Nishina, K., Hayashi, K., Oita, A., Asada, K., Hayakawa, A., Okadera, T., Onodera, T., Hanaoka, T., Tsuchiya, K., Kobayashi, K., and Koga, N.: Feasibility assessment of Japan's fertilizer reduction target: A meta-analysis and its implications for nitrogen waste, J. Environ. Manage., 373, 123362, https://doi.org/10.1016/j.jenvman.2024.123362, 2025.
Osada, K.: Measurement report: Short-term variation in ammonia concentrations in an urban area increased by mist evaporation and emissions from a forest canopy with bird droppings, Atmos. Chem. Phys., 20, 11941–11954, https://doi.org/10.5194/acp-20-11941-2020, 2020.
Pitman, J. I.: Ecophysiology of tropical dry evergreen forest, Thailand: Measured and modelled stomatal conductance of Hopea ferrea, a dominant canopy emergent, J. Appl. Ecol., 33, 1366–1378, https://doi.org/10.2307/2404777, 1996.
Ramsay, R., Di Marco, C. F., Sörgel, M., Heal, M. R., Carbone, S., Artaxo, P., de Araùjo, A. C., Sá, M., Pöhlker, C., Lavric, J., Andreae, M. O., and Nemitz, E.: Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest, Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, 2020.
Ramsay, R., Di Marco, C. F., Heal, M. R., Sörgel, M., Artaxo, P., Andreae, M. O., and Nemitz, E.: Measurement and modelling of the dynamics of NH3 surface–atmosphere exchange over the Amazonian rainforest, Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, 2021.
Rubin, H. J., Fu, J. S., Dentener, F., Li, R., Huang, K., and Fu, H.: Global nitrogen and sulfur deposition mapping using a measurement–model fusion approach, Atmos. Chem. Phys., 23, 7091–7102, https://doi.org/10.5194/acp-23-7091-2023, 2023.
Rudek, J., Aneja, V. P., and Abrol, Y. P.: Concepts for considerations in the design of an Indian integrated nitrogen assessment, in: The Indian Nitrogen Assessment, edited by: Abrol, Y. P., Adhya, T. K., Aneja, V. P., Raghuram, N., Pathak, H., Kulshrestha, U., Sharma, C., and Singh, B., Elsevier, Amsterdam, 29–43, https://doi.org/10.1016/B978-0-12-811836-8.00003-3, 2017.
Rutledge-Jonker, S., Braam, M., Hoogerbrugge, R., Wichink Kruit, R., Nemitz, E., Twigg, M., Moene, A., Stolk, A., and van Pul, A.: Ammonia deposition measured with Conditional Time-Averaged Gradient (COTAG) systems in the Netherlands: methodological advances and results for 2012–2020, Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, https://doi.org/10.21945/RIVM-2022-0202, 2023.
Sase, H., Matsuda, K., Visaratana, T., Garivait, H., Yamashita, N., Kietvuttinon, B., Hongthong, B., Luangjame, J., Khummongkol, P., Shindo, J., Endo, T., Sato, K., Uchiyama, S., Miyazawa, M., Nakata, M., and Lenggoro, I. W.: Deposition process of sulfate and elemental carbon in Japanese and Thai forests, Asian J. Atmos. Environ., 6, 246–258, https://doi.org/10.5572/ajae.2012.6.4.246, 2012.
Sase, H., Yamashita, N., Luangjame, J., Garivait, H., Kietvuttinon, B., Visaratana, T., Kamisako, M., Kobayashi, R., Ohta, S., Shindo, J., Hayashi, K., Toda, H., and Matsuda, K.: Alkalinization and acidification of stream water with changes in atmospheric deposition in a tropical dry evergreen forest of northeastern Thailand, Hydrol. Process., 31, 836–846, https://doi.org/10.1002/hyp.11062, 2017.
Saylor, R. D., Walker, J. T., Wu, Z., Chen, X., Schwede, D. B., Oishi, A. C., and Lichiheb, N.: Dynamic ammonia exchange within a mixed deciduous forest canopy in the Southern Appalachians, Ecol. Model., 501, 111007, https://doi.org/10.1016/j.ecolmodel.2024.111007, 2025.
Schulte, R. B., van Zanten, M. C., Rutledge-Jonker, S., Swart, D. P. J., Wichink Kruit, R. J., Krol, M. C., van Pul, W. A. J., and Vilà-Guerau de Arellano, J.: Unraveling the diurnal atmospheric ammonia budget of a prototypical convective boundary layer, Atmos. Environ., 249, 118153, https://doi.org/10.1016/j.atmosenv.2020.118153, 2021.
Shapkalijevski, M., Moene, A. F., Ouwersloot, H. G., Patton, E. G., and Vilà-Guerau de Arellano, J.: Influence of canopy seasonal changes on turbulence parameterization within the roughness sublayer over an orchard canopy, Appl. Meteor. Climatol., 55, 1391–1407, https://doi.org/10.1175/JAMC-D-15-0205.1, 2016.
Sutton, M. A., Burkhard, J. K., Guerin, D., Nemitz, E., and Fowler, D.: Development of resistance models to describe measurements of bi-directional ammonia surface–atmosphere exchange, Atmos. Environ., 32, 473–480, https://doi.org/10.1016/S1352-2310(97)00164-7, 1998.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B. (Eds.): The European nitrogen assessment – sources, effects and policy perspectives, Cambridge Univ. Press, Cambridge, https://doi.org/10.1017/CBO9780511976988, 2011.
Tammadid, W., Sangkachai, B., Chanonmuang, P., Chidthaisong, A., and Hanpattanakit, P.: Comparison and environmental controls of soil respiration in primary and secondary dry dipterocarp forests in Thailand, Front. For. Glob. Change, 7, 1294942, https://doi.org/10.3389/ffgc.2024.1294942, 2024.
Tanaka, R., Chiu, C.-W., Gomi, T., Matsuda, K., Izuta, T., and Watanabe, M.: Stomatal ozone uptake of a Quercus serrata stand based on sap flow measurements with calibrated thermal dissipation sensors, Sci. Total Environ., 888, 164005, https://doi.org/10.1016/j.scitotenv.2023.164005, 2023.
Ueda, M. U., Kachina, P., Marod, D., Nakashizuka, T., and Kurokawa, H.: Soil properties and gross nitrogen dynamics in old growth and secondary forest in four types of tropical forest in Thailand, For. Ecol. Manage., 398, 130–139, https://doi.org/10.1016/j.foreco.2017.05.010, 2017.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft Data, J. Atmos. Oceanic Technol., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Walker, J. T., Chen, X., Wu, Z., Schwede, D., Daly, R., Djurkovic, A., Oishi, A. C., Edgerton, E., Bash, J., Knoepp, J., Puchalski, M., Iiames, J., and Miniat, C. F.: Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains, Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, 2023.
Wang, K., Kang, P., Lu, Y., Zheng, X., Liu, M., Lin, T.-J., Butterbach-Bahl, K., and Wang, Y.: An open-path ammonia analyzer for eddy covariance flux measurement, Agric. For. Meteorol., 308–309, 108570, https://doi.org/10.1016/j.agrformet.2021.108570, 2021.
Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., Luo, X., Shen, J., Wang, W., Li, K., Pan, Y., Zhang, L., Li, W., Collett, J. L., Zhong, B., Wang, X., Goulding, K. W. T., Zhang, F., and Liu, X.: Changes of nitrogen deposition in China from 1980 to 2018, Environ. Int., 144, 106022, https://doi.org/10.1016/j.envint.2020.106022, 2020.
Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J., and Collett Jr., J. L.: The role of dew as a night-time reservoir and morning source for atmospheric ammonia, Atmos. Chem. Phys., 16, 7435–7449, https://doi.org/10.5194/acp-16-7435-2016, 2016.
Wolff, V., Trebs, I., Ammann, C., and Meixner, F. X.: Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors, Atmos. Meas. Tech., 3, 187–208, https://doi.org/10.5194/amt-3-187-2010, 2010.
Wu, Z., Xu, M., Sorimachi, A., Sase, H., Watanabe, M., and Matsuda, K.: Dry deposition of nitric acid gas by long-term measurement above and below a forest canopy, Asian J. Atmos. Environ., 18, 11, https://doi.org/10.1007/s44273-024-00034-z, 2024.
Xu, M. and Matsuda, K.: Dry deposition of PM2.5 nitrate in a forest according to vertical profile measurements, Asian J. Atmos. Environ., 14, 367–377, https://doi.org/10.5572/ajae.2020.14.4.367, 2020.
Xu, M., Kasahara, K., Sorimachi, A., and Matsuda, K.: Nitric acid dry deposition associated with equilibrium shift of ammonium nitrate above a forest by long-term measurement using relaxed eddy accumulation, Atmos. Environ., 256, 118454, https://doi.org/10.1016/j.atmosenv.2021.118454, 2021.
Xu, M., Umehara, M., Sase, H., and Matsuda, K.: Ammonia fluxes over an agricultural field in growing and fallow periods using relaxed eddy accumulation, Atmos. Environ., 284, 119195, https://doi.org/10.1016/j.atmosenv.2022.119195, 2022.
Xu, M., Chanonmuang, P., and Matsuda, K.: Vertical profile and flux measurements of ammonia in a deciduous forest in Japan towards improvement of bi-directional exchange model, Atmos. Environ., 315, 120144, https://doi.org/10.1016/j.atmosenv.2023.120144, 2023.
Xu, M., Matsumoto, R., Chanonmuang, P., and Matsuda, K.: Vertical profile measurements for ammonia in a Japanese deciduous forest using denuder sampling technique: ammonia emissions near the forest floor, Asian J. Atmos. Environ., 18, 21, https://doi.org/10.1007/s44273-024-00042-z, 2024.
Yamaga, S., Ban, S., Xu, M., Sakurai, T., Itahashi, S., and Matsuda, K.: Trends of sulfur and nitrogen deposition from 2003 to 2017 in Japanese remote areas, Environ. Pollut., 289, 117842, https://doi.org/10.1016/j.envpol.2021.117842, 2021.
Yamashita, N., Ohta, S., Sase, H., Kievuttinon, B., Luangjame, J., Visaratana, T., and Garivait, H.: Seasonal changes in multi-scale spatial structure of soil pH and related parameters along a tropical dry evergreen forest slope, Geoderma, 165, 31–39, https://doi.org/10.1016/j.geoderma.2011.06.020, 2011.
Yamashita, N., Sase, H., and Kurokawa, J.: Assessing critical loads and exceedances for acidification and eutrophication in the forests of East and Southeast Asia: A comparison with EANET monitoring data, Sci. Total Environ., 851, 158054, https://doi.org/10.1016/j.scitotenv.2022.158054, 2022.
Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface exchange of atmospheric ammonia: A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models, J. Geophys. Res. Atmos., 115, D20310, https://doi.org/10.1029/2009JD013589, 2010.
Zhou, K., Xu, W., Zhang, L., Ma, M., Liu, X., and Zhao, Y.: Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models, Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, 2023.
Short summary
We first observed the exchange flux of ammonia over a tropical forest in Thailand. Measurements were taken during two periods in the dry season with different environmental conditions. This data improves our understanding of how ammonia behaves in forests under tropical climates and helps refine models that estimate nitrogen deposition and assess its impact across East Asia.
We first observed the exchange flux of ammonia over a tropical forest in Thailand. Measurements...
Altmetrics
Final-revised paper
Preprint