Articles | Volume 25, issue 21
https://doi.org/10.5194/acp-25-15343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-15343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deciphering dust provenance and transport pathways across Northern China's source-sink systems
Lanying Han
Key Laboratory of Qian Xuesen Deserticulture of Shaanxi Higher Education Institute, School of Geography and Tourism, Shaanxi Observation and Research Station for Ecology and Environment of Desert-Loess Zone at Yulin, Shaanxi Normal University, Xi'an 710119, China
Zhenyu Zhang
Key Laboratory of Qian Xuesen Deserticulture of Shaanxi Higher Education Institute, School of Geography and Tourism, Shaanxi Observation and Research Station for Ecology and Environment of Desert-Loess Zone at Yulin, Shaanxi Normal University, Xi'an 710119, China
Aimin Liang
Key Laboratory of Qian Xuesen Deserticulture of Shaanxi Higher Education Institute, School of Geography and Tourism, Shaanxi Observation and Research Station for Ecology and Environment of Desert-Loess Zone at Yulin, Shaanxi Normal University, Xi'an 710119, China
Junfeng Lu
Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Zhibao Dong
Key Laboratory of Qian Xuesen Deserticulture of Shaanxi Higher Education Institute, School of Geography and Tourism, Shaanxi Observation and Research Station for Ecology and Environment of Desert-Loess Zone at Yulin, Shaanxi Normal University, Xi'an 710119, China
Zhengcai Zhang
CORRESPONDING AUTHOR
Key Laboratory of Qian Xuesen Deserticulture of Shaanxi Higher Education Institute, School of Geography and Tourism, Shaanxi Observation and Research Station for Ecology and Environment of Desert-Loess Zone at Yulin, Shaanxi Normal University, Xi'an 710119, China
Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Cited articles
Batt, R. G. and Peabody, S. A.: Threshold friction velocities for large pebble gravel beds, Journal of Geophysical Research, 104, 24263–24279, https://doi.org/10.1029/1999JD900484, 1999.
Bird, A., Stevens, T., Rittner, M., Vermeesch, P., Carter, A., Lu, H. L., Andò, S., Garzanti, E., Nie, J. S., and Xu, Z. W.: Quaternary dust source variation across the Chinese Loess Plateau, Palaeogeography Palaeoclimatology Palaeoecology, 435, 254–264, https://doi.org/10.1016/j.palaeo.2015.06.024, 2015.
Bohm, K., Stevens, T., Kaakinen, A., Lahaye, Y., O'Brien, H., and Zhang, Z. Q.: The provenance of late Cenozoic East Asian Red Clay: Tectonic-metamorphic history of potential source regions and a novel combined zircon-rutile approach, Earth-Science Reviews, 225, 103909, https://doi.org/10.1016/j.earscirev.2021.103909, 2022.
Chen, F. H., Chen, S. Q., Zhang, X., Chen, J. H., Wang, X., Gowan, E. J., Qiang, M. R., Dong, Z. L., Li, Y. C., Xu, Q. H., Xu, Y. Y., Smol, J. P., and Liu, J. B.: Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP, Nature Communications, 11, 992, https://doi.org/10.1038/s41467-020-14765-4, 2020.
Chen, J., Li, G., Yang, J., Rao, W. B., Lu, H. Y., Balsam, W., Sun, Y. B., and Ji, J. F.: Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust, Geochimica et Cosmochimica Acta, 71, 3904–3914, https://doi.org/10.1016/j.gca.2007.04.033, 2007.
Chen, Y., Chen, S. Y., Bi, H. R., Zhou, J., and Zhang, Y.: Where is the dust source of 2023 several severe dust events in China?, Bulletin of the American Meteorological Society, 105, E2085–E2096, https://doi.org/10.1175/BAMS-D-23-0121.1, 2024.
Collins, A. L., Walling, D. E., Webb, L., and King, P.: Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information, Geoderma, 155, 249–261, https://doi.org/10.1016/j.geoderma.2009.12.008, 2010.
Cooper, R. J., Krueger, T., Hiscock, K. M., and Rawlins, B. G.: High-temporal resolution fluvial sediment source fingerprinting with uncertainty: a Bayesian approach, Earth Surface Processes and Landforms, 40, 78–92, https://doi.org/10.1002/esp.3621, 2015.
Ding, Z. L., Sun, J. M., Yang, S. L., and Liu, T. S.: Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change, Geochimica et Cosmochimica Acta, 65, 901–913, https://doi.org/10.1016/S0016-7037(00)00571-8, 2001.
Fenn, K., Stevens, T., Bird, A., Limonta, M., Rittner, M., Vermeesch, P., and Lin, Z.: Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess, Quaternary Research, 89, 645–659, https://doi.org/10.1017/qua.2017.86, 2018.
Fryrear, D. W.: A field dust sampler, Journal of Soil and Water Conservatory, 41, 117–120, https://doi.org/10.1080/00224561.1986.12455946, 1986.
Gallet, S., Jahn, B., and Torii, M.: Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications, Chemical Geology, 133, 67–88, https://doi.org/10.1016/S0009-2541(96)00070-8, 1996.
Gaspar, L., Blake, W. H., Smith, H. G., Lizaga, I., and Navas, A.: Testing the sensitivity of a multivariate mixing model using geochemical fingerprints with artificial mixtures, Geoderma, 337, 498–510, https://doi.org/10.1016/j.geoderma.2018.10.005, 2019.
Gillette, D., Ono, D., and Richmond, K.: A combined modeling and measurement technique for estimating windblown dust emissions at Owens (dry) Lake, California, Journal of Geophysical Research, 109, F01003, https://doi.org/10.1029/2003JF000025, 2004.
Hu, F. G. and Yang, X. P.: Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China, Quaternary Science Reviews, 131, 179–192, https://doi.org/10.1016/j.quascirev.2015.10.039, 2016.
Honda, M., Yabuki, S., and Shimizu, H.: Geochemical and isotopic studies of aeolian sediments in China, Sedimentology, 51, 211–230, https://doi.org/10.1111/j.1365-3091.2004.00618.x, 2004.
Jahn, B. M., Gallet, S., and Han, J. M.: Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka, Chemical Geology, 178, 71–94, https://doi.org/10.1016/S0009-2541(00)00430-7, 2001.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., LaRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Ju, T., Li, X., Zhang, H., Cai, X., and Song, Y.: Effects of soil moisture on dust emission from 2011 to 2015 observed over the Horqin Sandy Land area, China, Aeolian Research, 32, 14–23, https://doi.org/10.1016/j.aeolia.2018.01.003, 2018.
Kapp, P., Pelletier, J. D., Rohrmann, A., Heermance, R. V., Russell, R., and Ding, L.: Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess plateau, GSA Today, 21, 4–10, https://doi.org/10.1130/GSATG99A.1, 2011.
Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi A. A., Mahowald, N. M., Evan, A. T., He, C. L., and Leung, D. M.: Mineral dust aerosol impacts on global climate and climate change, Nature Reviews Earth & Environment, 4, 71–86, https://doi.org/10.1038/s43017-022-00379-5, 2023.
Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1–27, https://doi.org/10.1007/BF02289565, 1964.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.: Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature, 452, https://doi.org/10.1038/nature06763, 2008.
Laurent, B., Marticorena, B., Bergametti, G. P., and Mei, F. M.: Modeling mineral dust emissions from Chinese and Mongolian deserts, Global Planetary Change, 52, 121–141, https://doi.org/10.1016/j.gloplacha.2006.02.012, 2006.
Li, Y., Liang, P., Song, Y. G., Li, X. Z., Yang, S. L., Chen, X. L., Zong, X. L., Shukurov, N., and Li, Y. D.: Unraveling source-to-sink dust transport in Central and East Asia by identifying provenances of aeolian sediments, Atmospheric Research, 293, 106929, https://doi.org/10.1016/j.atmosres.2023.106929, 2023.
Li, Y., Song, Y. G., Guo, Y. A., Liang, P., Chen, X. L., Xiao, J. Y., Shukurov, S., and Li, Y. D.: Re-evaluating the origins of sands in the Gurbantunggut Desert and its role as an aeolian dust contributor, Global and Planetary Change, 239, 104482, https://doi.org/10.1016/j.gloplacha.2024.104482, 2024.
Liang, Q., Hu, J., and Gregoire, D. C.: Determination of trace elements in granites by inductively coupled plasma mass spectrometry, Talanta, 51, 507–513, https://doi.org/10.1016/S0039-9140(99)00318-5, 2000.
Liang, P., Chen, B., Yang, X., Liu, Q., Li, A., Mackenzie, L, and Zhang, D.: Revealing the dust transport processes of the 2021 mega dust storm event in northern China, Science Bulletin, 67, 21–24, https://doi.org/10.1016/j.scib.2021.08.014, 2022.
Licht, A., Pullen, A., Kapp, P., Abell, J., and Giesler, N.: Aeolian cannibalism: reworked loess as the main sediment source of the Chinese Loess Plateau, GSA Bulletin, 128, 944–956, https://doi.org/10.1130/B31375.1, 2016.
Liu, C. Q., Masuda, A., Okada, A., Yabuki, S., and Fan, Z.: Isotope geochemistry of Quaternary deposits from the arid lands in northern China, Earth and Planetary Science Letters, 127, 25–38, https://doi.org/10.1016/0012-821X(94)90195-3, 1994.
Liu, Q. Q. and Yang, X. P.: Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China, Geomorphology, 318, 354–374, https://doi.org/10.1016/j.geomorph.2018.06.017, 2018.
Luo, H. P., Guan, Q. Y., Shao, W. Y., Du, Q. Q., Xiao, X., Ni, F., and Zhang, J.: Quantifying the contribution of dust sources in the arid area of northwest China using multivariate statistical techniques and Bayesian mixing models, Journal of Cleaner Production, 379, 134672, https://doi.org/10.1016/j.jclepro.2022.134672, 2022.
Maher, B. A., Mutch, T. J., and Cunningham, D.: Magnetic and geochemical characteristics of Gobi Desert surface sediments: Implications for provenance of the Chinese Loess Plateau, Geology, 37, 279–282, https://doi.org/10.1130/G25293A.1, 2009.
Marticorena, B., Bergametti, G., and Gillette, D.: Factors controlling threshold friction velocity in semiarid and arid areas of the United States, Journal of Geophysical Research, 102, 23277–23287, https://doi.org/10.1029/97JD01303, 1997.
Muhs, D. R.: Mineralogical maturity in dune fields of North America, Africa and Australia, Geomorphology, 59, 247–269, https://doi.org/10.1016/j.geomorph.2003.07.020, 2004.
Muhs, D. R.: The geochemistry of loess: Asian and North American deposits compared, Journal of Asian Earth Sciences, 155, 81–115, https://doi.org/10.1016/j.jseaes.2017.10.032, 2018.
Nie, J. S., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Andò, S., Vermeesch, P., Saylor, J., Lu, H. Y., Breecher, D., Hu, X. F., Liu, S. P., Resentini, A., Vezzoil, G., Peng, W. B., Carter, A., Ji, S. C., and Pan, B. T.: Loess Plateau storage of Northeastern Tibetan plateau-derived Yellow River sediment, Nature Communication, 6, 8511, https://doi.org/10.1038/ncomms9511, 2015.
Prospero, J.: Long-termmeasurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality, Journal of Geophysical Research, 104, 15917–15927, https://doi.org/10.1029/1999JD900072, 1999.
Pullen, A., Kapp, P., McCallister, A. T., McCallister, A. T., Chang, H., Gehrels, G. E., Garzione, C. N., Heermance, R. V., and Ding, L.: Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications, Geology, 39, 1031–1034, https://doi.org/10.1130/G32296.1, 2011.
Rittner, M., Vermeesch, P., Carter, A., Bird, A. F., Stevens, T., Garzanti, E., Andò, S., GiovanniVezzoli, G., Dutt, R., Xu, Z. W., and Lu, H. Y.: The provenance of Taklamakan desert sand, Earth and Planetary Science Letters, 437, 127–13, https://doi.org/10.1016/j.epsl.2015.12.036, 2016.
Shao, Y., Fink, A. H., and Klose, M.: Numerical simulation of a continental-scale Saharan dust event, Journal of Geophysical Research, 115, D13205, https://doi.org/10.1029/2009JD012678, 2010.
Stevens T., Palk, C., Carter, A., Lu, H. Y., and Clift, P. D.: Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons, GSA Bulletin, 122, 1331–1344, https://doi.org/10.1130/B30102.1, 2010.
Stevens, T., Carter, A., Watson, T. P., Vermeesch, P., Bird, A. F., Garzanti, E., Cottam, M. A., and Sevastjanova, I.: Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau, Quaternary Science Reviews, 78, 355–368, https://doi.org/10.1016/j.quascirev.2012.11.032, 2013.
Sun, J. M.: Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau, Earth and Planetary Science Letters, 203, 845–859, https://doi.org/10.1016/S0012-821X(02)00921-4, 2002.
Sun, J. M., Ding, Z. L., Xia, X. P., Sun, M., and Windley, B. F.: Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau, Journal of Asian Earth Science, 155, 21–34, https://doi.org/10.1016/j.jseaes.2017.10.012, 2018.
Sun, Y. B., Yan, Y., Nie, J. S., Ki, G. J., Shi, Z., Qiang, H., Chang, h., An, Z. S.: Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene, Earth-Science Reviews, 200, 102963, https://doi.org/10.1016/j.earscirev.2019.102963, 2020.
Tan, Z. Y., Liu, YZ., Zhu, Q. Z., and Shao, T. B.: Impact of massive topography on the dust cycle surrounding the Tibetan Plateau, Atmospheric Environment, 264, 118703, https://doi.org/10.1016/j.atmosenv.2021.118703, 2021.
Tanaka, T. and Chiba, M.: A numerical study of the contributions of dust source regions to the global dust budget, Global and Planetary Change, 52, 88–104, https://doi.org/10.1016/j.gloplacha.2006.02.002, 2006.
Vermeesch, P.: Multi-sample comparison of detrital age distributions, Chemical Geology, 341, 140–146, https://doi.org/10.1016/j.chemgeo.2013.01.010, 2013.
Webb, N. P., Okin, G. S., and Brown, S.: The effect of roughness elements on wind erosion: the importance of surface shear stress distribution, Journal of Geophysical Research Atmospheres, 119, 6066–6084, https://doi.org/10.1002/2014jd021491, 2014.
Wu, C., Lin, Z., Shao, Y., Liu, X., and Li, Y.: Drivers of recent decline in dust activity over East Asia, Nature Communications, 13, 7105, https://doi.org/10.1038/s41467-022-34823-3, 2022.
Wyrwoll, K., Wei, J. H., Lin, Z. H., Shao, Y. P., and He, F.: Cold surges and dust events: Establishing the link between the East Asian Winter Monsoon and the Chinese loess record, Quaternary Science Reviews, 149, 102–108, https://doi.org/10.1016/j.quascirev.2016.04.015, 2016.
Xuan, J., Liu, G. L., and Du, K.: Dust emission inventory in Northern China, Atmospheric Environment, 34, 4565–4570, https://doi.org/10.1016/S1352-2310(00)00203-X, 2000.
Yang, K. F., Fan, H. R., Pirajno, F., and Li, X. C.: The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite, Geology, 47, 1198–1202, https://doi.org/10.1130/G46674.1, 2019.
Zhang, Z. C., Dong, Z. B., and Zhao, A. G.: The effect of restored microbiotic crusts on erosion of soil from a desert area in China, Journal of Arid Environments, 7, 710–721, https://doi.org/10.1016/j.jaridenv.2007.09.001, 2008.
Zhang, Z. C., Dong, Z. B., Qian, G. Q., and Jiang, C. W.: Implications of surface properties for dust emission from gravel deserts (gobis) in the Hexi Corridor, Geoderma, 268, 69–77, https://doi.org/10.1016/j.geoderma.2016.01.011, 2016.
Zhang, Z. C., Pan, K. J., Zhang, C. X., and Liang, A. M.: Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China, Catena, 190, 104483, https://doi.org/10.1016/j.catena.2020.104483, 2020.
Zhang, Z. C., Bird, A., Zhang, C. X., and Dong, Z. B.: Not all gravel deserts in northern China are sources of regionally deposited dust, Atmospheric Environment 273, 118984, https://doi.org/10.1016/j.atmosenv.2022.118984, 2022a.
Zhang, Z. C., Liang, A. M., Dong, Z. B., and Zhang, Z. H.: Sand provenance in the Gurbantunggut Desert, northern China, Catena, 214, 106242, https://doi.org/10.1016/j.catena.2022.106242, 2022b.
Zhou, W., Wang, H., and Ge, Q.: Contributions of climatic factors and vegetation cover to the temporal shift in Asian dust events, npj Climate and Atmospheric Science, 7, 328, https://doi.org/10.1038/s41612-024-00887-9, 2024.
Short summary
Uncertainties persist in dust source apportionment for northern China's arid ecosystems. Geochemical fingerprinting of April 2023 airborne dust from six deserts reveals Taklimakan/Gurbantunggut as primary sources. Alxa Plateau’s elevation (>1500 m) filters dust to Lanzhou/Mu Us, enabling recycling. Spatial variations show Lanzhou’s dust: 26 % Gurbantunggut, 18 % Taklimakan; Mu Us: 28 % Alxa, 22 % Taklimakan. Elevation barriers and sediment recycling modulate East Asian dust dynamics.
Uncertainties persist in dust source apportionment for northern China's arid ecosystems....
Altmetrics
Final-revised paper
Preprint