Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., and Crawford, J. H.: Application of OMI observations to a space-based indicator of
NOx and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213–2223, https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010.
Grange, S. K., Farren, N. J., Vaughan, A. R., Rose, R. A., and Carslaw, D. C.: Strong Temperature Dependence for Light-Duty Diesel Vehicle
NOx Emissions, Environ. Sci. Technol., 53, 6587–6596, https://doi.org/10.1021/acs.est.9b01024, 2019.
Hall, D. L., Anderson, D. C., Martin, C. R., Ren, X., Salawitch, R. J., He, H., Canty, T. P., Hains, J. C., and Dickerson, R. R.: Using near-road observations of CO,
NOy, and
CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity, Atmos. Environ., 232, 117558, https://doi.org/10.1016/j.atmosenv.2020.117558, 2020.
Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G., Dickerson, R. R., Artz, R. S., and Keene, W. C.: Seasonal transition from
NOx- to hydrocarbon-limited conditions for ozone production over the eastern United States in September, J. Geophys. Res., 100, 9315–9324, https://doi.org/10.1029/94JD03125, 1995.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., Boersma, K. F., De Smedt, I., Gonzalez Abad, G., Chance, K., and Tonnesen, G. S.: Evaluating a Space-Based Indicator of Surface Ozone-
NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends, J. Geophys. Res.-Atmos., 122, 10439–10491, https://doi.org/10.1002/2017JD026720, 2017.
Kendall, M. G.: Rank Correlation Methods, 4th edn., London, Griffin, ISBN 978-0-85-264199-6, 1975.
Kerry, K. E. and Hawick, K. A.: Kriging interpolation on high-performance computers, in: High Performance Computing and Networking, HPCN-Europe, edited by: Sloot, P., Bubak, M., and Hertzberger, B., Lecture Notes in Computer Science, vol. 1401, Springer, Berlin, https://doi.org/10.1007/BFb0037170, 1998.
Kleinman, L. I.: Seasonal Dependence of Boundary Layer Peroxide Concentration: The Low and High
NOx Regimes, J. Geophys. Res., 96, 20721–20733, https://doi.org/10.1029/91JD02040, 1991.
Largeron, Y. and Staquet, C.: Persistent inversion dynamics and wintertime PM
10 air pollution in Alpine valleys, Atmos. Environ., 135, 92–108, https://doi.org/10.1016/j.atmosenv.2016.03.045, 2016.
Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P., Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk, S. K.: Ozone pollution in the North China Plain spreading into the late-winter haze season, P. Natl. Acad. Sci. USA, 118, e2015797118, https://doi.org/10.1073/pnas.2015797118, 2021.
Li, X., Dallmann, T. R., May, A. A., and Presto, A. A.: Seasonal and Long-Term Trend of on-Road Gasoline and Diesel Vehicle Emission Factors Measured in Traffic Tunnels, Appl. Sci.-Basel, 10, 2458, https://doi.org/10.3390/app10072458, 2020.
Liang, J., Horowitz, L. W., Jacob, D. J., Wang, Y., Fiore, A. M., Logan, J. A., Gardner, G. M., and Munger, J. W.: Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere, J. Geophys. Res., 103, 13435–13450, https://doi.org/10.1029/97JD03126, 1998.
Lyman, S., Mansfield, M., Tran, H., and Tran, T.: Annual Report: Uinta Basin Air Quality Research, 33–35,
https://www.usu.edu/binghamresearch/files/reports/UBAQR-2018-AnnualReport.pdf (last access: 2025), 2018.
Lyman, S. N., Holmes, M., Tran, H., Tran, T., and O'Neil, T.: High ethylene and propylene in an area dominated by oil production, Atmosphere-Basel, 12, 1, https://doi.org/10.3390/atmos12010001, 2021.
Lyman, S. N., Elgiar, T., Gustin, M. S., Dunham-Cheatham, S. M., David, L. M., and Zhang, L.: Evidence against Rapid Mercury Oxidation in Photochemical Smog, Environ. Sci. Technol., 56, 11225–11235, 2022.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Mansfield, M. L. and Hall, C. F.: Statistical analysis of winter ozone events, Air Qual. Atmos. Hlth., 6, 687–699, https://doi.org/10.1007/s11869-013-0204-0, 2013.
Mansfield, M. L. and Hall, C. F.: A survey of valleys and basins of the western United States for the capacity to produce winter ozone, J. Air Waste Manage., 68, 909–919, https://doi.org/10.1080/10962247.2018.1454356, 2018.
Mansfield, M. L. and Lyman, S. N.: Winter Ozone Pollution in Utah's Uinta Basin is Attenuating, Atmosphere-Basel, 12, 4, https://doi.org/10.3390/atmos12010004, 2021.
Mansfield, M. and Lyman, S.: F0AM model script for Horsepool, Utah, wintertime ozone formation, Zenodo [code], https://doi.org/10.5281/zenodo.17127373, 2025.
Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions, Geophys. Res. Lett., 31, L06120, https://doi.org/10.1029/2004GL019416, 2004.
Matichuk, R., Tonnesen, G., Luecken, D., Gilliam, R., Napelenok, S. L., Baker, K. R., Schwede, D., Murphy, B., Helmig, D., Lyman, S., and Roselle, S.: Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin, J. Geophys. Res.-Atmos., 122, 13545–13572, https://doi.org/10.1002/2017JD027057, 2017.
Mazzuca, G. M., Ren, X., Loughner, C. P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A. J., and Dickerson, R. R.: Ozone production and its sensitivity to
NOx and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013, Atmos. Chem. Phys., 16, 14463–14474, https://doi.org/10.5194/acp-16-14463-2016, 2016.
MCM: The Master Chemical Mechanism,
http://mcm.york.ac.uk/, last access: February 2022.
NASA Giovanni:
https://giovanni.gsfc.nasa.gov/giovanni/ (last access: September 2024), 2022.
NASA OMI:
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/omi, last access: September 2022.
NOAA GML:
https://gml.noaa.gov/ccgg/trends_ch4/, last access: September 2022.
Peng, Y. P., Chen, Y. S., Wang, H. K., and Lai, C. H.: In Situ Measurements of Hydrogen Peroxide, Nitric Acid and Reactive Nitrogen to Assess the Ozone Sensitivity in Pingtung County, Taiwan, Aerosol Air Qual. Res., 11, 59–69, https://doi.org/10.4209/aaqr.2010.10.0091, 2011.
Reiter, M. S. and Kockelman, K. M.: The problem of cold starts: A closer look at mobile source emission levels, Transport Res. D-Tr. E., 43, 123–132, https://doi.org/10.1016/j.trd.2015.12.012, 2016.
Rickard, A. R., Salisbury, G., Monks, P. S., Lewis, A. C., Baugitte, S., Bandy, B. J., Clemitshaw, K. C., and Penkett, S. A.: Comparison of Measured Ozone Production Efficiencies in the Marine Boundary Layer at Two European Coastal Sites under Different Pollution Regimes, J. Atmos. Chem., 43, 107–134, https://doi.org/10.1023/A:1019970123228, 2002.
Saha, P. K., Khlystov, A., Snyder, M. G., and Grieshop, A. P.: Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons, Atmos. Environ., 177, 143–153, https://doi.org/10.1016/j.atmosenv.2018.01.019, 2018.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V., and White, A. B.: Rapid photochemical production of ozone at high concentrations in a rural site during winter, Nat. Geosci., 2, 120, https://doi.org/10.1038/ngeo415, 2009.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn., Wiley, 2006. See pp. 215 ff for a discussion of ozone production efficiency; p. 765 for the formula to calculate the saturation vapor pressure of water, ISBN 978-1-11-859136-9, 2006.
Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of changing
NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric
NO2 columns over China, Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, 2020.
Sillman, S.: The use of
NOy,
H2O2, and
HNO3 as indicators for ozone-
NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res., 100, 14175–14188, https://doi.org/10.1029/94JD02953, 1995.
Sillman, S.: The relation between ozone,
NOx and hydrocarbons in urban and polluted rural environments, Atmos. Environ., 33, 1821–1845, https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Sillman, S., He, D., Cardelino, C., and Imhoff, R. E.: The Use of Photochemical Indicators to Evaluate Ozone-
NOx-Hydrocarbon Sensitivity: Case Studies from Atlanta, New York, and Los Angeles, J. Air Waste Manage., 47, 1030–1040, https://doi.org/10.1080/10962247.1997.11877500, 1997.
Sillman, S., He, D., Pippin, M. R., Daum, P. H., Imre, D. G., Kleinman, L. I., Lee, J. H., and Weinstein-Lloyd, J.: Model correlations for ozone, reactive nitrogen, and peroxides for Nashvil
le in comparison with measurements: Implications for
O3-
NOx-hydrocarbon chemistry, J. Geophys. Res., 103, 22629–22644, https://doi.org/10.1029/98JD00347, 1998.
Sillman, S. and He, D.: Some theoretical results concerning
O3-
NOx-VOC chemistry and
NOx-VOC indicators, J. Geophys. Res., 107, 4659, https://doi.org/10.1029/2001JD001123, 2002.
Suarez-Bertoa, R. and Astorga, C.: Impact of cold temperature on Euro 6 passenger car emissions, Environ. Pollut., 234, 318–329, https://doi.org/10.1016/j.envpol.2017.10.096, 2018.
Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and
NOx: 2. Long-lived species as indicators of ozone concentration sensitivity, J. Geophys. Res., 105, 9227–9241, https://doi.org/10.1029/1999JD900372, 2000.
USU BRC: Data Access,
https://www.usu.edu/binghamresearch/data-access, last access: 23 September 2025.
Wang, L., Wang, J., Tan, X., and Fang, C.: Analysis of
NOx Pollution Characteristics in the Atmospheric Environment in Changchun City, Atmosphere-Basel, 11, 30, https://doi.org/10.3390/atmos11010030, 2020.
Wærsted, E. G., Sundvor, I., Denby, B. R., and Mu, Q.: Quantification of temperature dependence of
NOx emissions from road traffic in Norway using air quality modeling and monitoring data, Atmos. Environ., 13, 100160, https://doi.org/10.1016/j.aeaoa.2022.100160, 2022.
Weber, C., Sundvor, I., and Figenbaum, E.: Comparison of regulated emission factors of Euro 6 LDV in Nordic temperatures and cold start conditions: Diesel- and gasoline direct-injection, Atmos. Environ., 206, 208–217, https://doi.org/10.1016/j.atmosenv.2019.02.031, 2019.
Whiteman, C. D., Eisenbach, S., Pospichal, B., and Steinacker, R.: Comparison of Vertical Soundings and Sidewall Air Temperature Measurements in a Small Alpine Basin, J. Appl. Meteorol. Clim., 43, 1635–1647, https://doi.org/10.1175/JAM2168.1, 2004.
Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) v3.1, Geosci. Model Dev., 9, 3309–3319, https://doi.org/10.5194/gmd-9-3309-2016, 2016.
Zong, R., Xue, L., Wang, T., and Wang, W.: Inter-comparison of the Regional Atmospheric Chemistry Mechanism (RACM2) and Master Chemical Mechanism (MCM) on the simulation of acetaldehyde, Atmos. Environ., 186, 144–149, https://doi.org/10.1016/j.atmosenv.2018.05.013, 2018.