Articles | Volume 25, issue 18
https://doi.org/10.5194/acp-25-10965-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-10965-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New water-soluble, toxic tracers of wood burning identified in fine brown carbon aerosol using a non-target approach
Vinh Nguyen
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
Bartłomiej Witkowski
CORRESPONDING AUTHOR
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
Tomasz Gierczak
Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
Related authors
No articles found.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Bartłomiej Witkowski, Priyanka Jain, and Tomasz Gierczak
Atmos. Chem. Phys., 22, 5651–5663, https://doi.org/10.5194/acp-22-5651-2022, https://doi.org/10.5194/acp-22-5651-2022, 2022
Short summary
Short summary
This article describes a comprehensive investigation of the aqueous oxidation of 4-nitrophenol (4NP) by hydroxyl radicals (OH). The reaction was carried out in a laboratory photoreactor. We report the formation of key intermediates under different pH conditions and the evolution of the light absorption of the reaction solution. The results provide new insights into the formation and removal (chemical bleaching) of light-absorbing organic aerosols (atmospheric brown carbon).
Cited articles
Admasie, A., Kumie, A., and Worku, A.: Children under Five from Houses of Unclean Fuel Sources and Poorly Ventilated Houses Have Higher Odds of Suffering from Acute Respiratory Infection in Wolaita-Sodo, Southern Ethiopia: A Case-Control Study, J. Environ. Public Health., 2018, 9320603, https://doi.org/10.1155/2018/9320603, 2018.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alakoski, E., Jämsén, M., Agar, D., Tampio, E., and Wihersaari, M.: From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review, Renew. Sustain. Energy Rev., 54, 376–383, https://doi.org/10.1016/j.rser.2015.10.021, 2016.
Amegah, A. K. and Jaakkola, J. J.: Household air pollution and the sustainable development goals, Bull. World Health Org., 94, 215–221, https://doi.org/10.2471/blt.15.155812, 2016.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., and Smith, D. L.: Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization, Renew. Sustain. Energy Rev., 139, 110691, https://doi.org/10.1016/j.rser.2020.110691, 2021.
Aron, A. T., Gentry, E. C., McPhail, K. L., Nothias, L.-F., Nothias-Esposito, M., Bouslimani, A., Petras, D., Gauglitz, J. M., Sikora, N., Vargas, F., van der Hooft, J. J. J., Ernst, M., Kang, K. B., Aceves, C. M., Caraballo-Rodríguez, A. M., Koester, I., Weldon, K. C., Bertrand, S., Roullier, C., Sun, K., Tehan, R. M., Boya P, C. A., Christian, M. H., Gutiérrez, M., Ulloa, A. M., Tejeda Mora, J. A., Mojica-Flores, R., Lakey-Beitia, J., Vásquez-Chaves, V., Zhang, Y., Calderón, A. I., Tayler, N., Keyzers, R. A., Tugizimana, F., Ndlovu, N., Aksenov, A. A., Jarmusch, A. K., Schmid, R., Truman, A. W., Bandeira, N., Wang, M., and Dorrestein, P. C.: Reproducible molecular networking of untargeted mass spectrometry data using GNPS, Nat. Protoc., 15, 1954–1991, https://doi.org/10.1038/s41596-020-0317-5, 2020.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020.
Bianco, A., Passananti, M., Deguillaume, L., Mailhot, G., and Brigante, M.: Tryptophan and tryptophan-like substances in cloud water: Occurrence and photochemical fate, Atmos. Environ., 137, 53–61, https://doi.org/10.1016/j.atmosenv.2016.04.034, 2016.
Black, G. P., He, G., Denison, M. S., and Young, T. M.: Using Estrogenic Activity and Nontargeted Chemical Analysis to Identify Contaminants in Sewage Sludge, Environ. Sci. Technol., 55, 6729–6739, https://doi.org/10.1021/acs.est.0c07846, 2021.
Blaženović, I., Kind, T., Ji, J., and Fiehn, O.: Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics, Metabolites, 8, 31, https://doi.org/10.3390/metabo8020031, 2018.
Brege, M. A., China, S., Schum, S., Zelenyuk, A., and Mazzoleni, L. R.: Extreme Molecular Complexity Resulting in a Continuum of Carbonaceous Species in Biomass Burning Tar Balls from Wildfire Smoke, ACS Earth Space Chem., 5, 2729–2739, https://doi.org/10.1021/acsearthspacechem.1c00141, 2021.
Bremer, P. L., Vaniya, A., Kind, T., Wang, S., and Fiehn, O.: How well can we predict mass spectra from structures? Benchmarking competitive fragmentation modeling for metabolite identification on untrained tandem mass spectra, J. Chem. Inf. Model., 62, 4049–4056, 2022.
Cesprini, E., Greco, R., Causin, V., Urso, T., Cavalli, R., and Zanetti, M.: Quality assessment of pellets and briquettes made from glued wood waste, Eur. J. Wood Wood Prod., 79, 1153–1162, https://doi.org/10.1007/s00107-021-01695-1, 2021.
CFM-ID ESI-MS/MS database description and statistics, https://cfmid.wishartlab.com/statistics (last access: 26 November 2024), 2024.
Chan, L. K., Nguyen, K. Q., Karim, N., Yang, Y., Rice, R. H., He, G., Denison, M. S., and Nguyen, T. B.: Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols, Atmos. Chem. Phys., 20, 539–559, https://doi.org/10.5194/acp-20-539-2020, 2020.
Chang, Z., Shen, G., Jiang, K., Huang, W., Zhao, J., Luo, Z., Men, Y., Xing, R., Zhao, N., Pan, B., Xing, B., and Tao, S.: Environmental implications of residual pyrogenic carbonaceous materials from incomplete biomass combustion: a review, Carbon Res., 3, 15, https://doi.org/10.1007/s44246-024-00103-6, 2024.
Chao, A., Al-Ghoul, H., McEachran, A. D., Balabin, I., Transue, T., Cathey, T., Grossman, J. N., Singh, R. R., Ulrich, E. M., and Williams, A. J.: In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT mixture samples, Anal. Bioanal. Chem., 412, 1303–1315, 2020.
Che, H., Segal-Rozenhaimer, M., Zhang, L., Dang, C., Zuidema, P., Dobracki, A., Sedlacek, A. J., Coe, H., Wu, H., Taylor, J., Zhang, X., Redemann, J., and Haywood, J.: Cloud processing and weeklong ageing affect biomass burning aerosol properties over the south-eastern Atlantic, Commun. Earth Environ., 3, 182, https://doi.org/10.1038/s43247-022-00517-3, 2022.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Choudhary, V., Roson, M. L., Guo, X., Gautam, T., Gupta, T., and Zhao, R.: Aqueous-phase photochemical oxidation of water-soluble brown carbon aerosols arising from solid biomass fuel burning, Environ. Sci.: Atmos., 3, 816–829, https://doi.org/10.1039/d2ea00151a, 2023.
D'Andrilli, J., Cooper, W. T., Foreman, C. M., and Marshall, A. G.: An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability, Rapid Commun. Mass Spectrom., 29, 2385–2401, https://doi.org/10.1002/rcm.7400, 2015.
Divisekara, D. T. D. K.: UHPLC/FT-MS Non-Targeted Screening Approach for Biomass Burning Organic Aerosol and Liquid Smoke as Biomass Burning Organic Aerosol Surrogate, Michigan Technological University, 2023.
Divisekara, T., Schum, S., and Mazzoleni, L.: Ultrahigh performance LC/FT-MS non-targeted screening for biomass burning organic aerosol with MZmine2 and MFAssignR, Chemosphere, 338, 139403, https://doi.org/10.1016/j.chemosphere.2023.139403, 2023.
Evans, R. L., Bryant, D. J., Voliotis, A., Hu, D., Wu, H., Syafira, S. A., Oghama, O. E., McFiggans, G., Hamilton, J. F., and Rickard, A. R.: A Semi-Quantitative Approach to Nontarget Compositional Analysis of Complex Samples, Anal. Chem., 96, 18349–18358, https://doi.org/10.1021/acs.analchem.4c00819, 2024.
Evans, R. L., Bryant, D. J., Voliotis, A., Hu, D., Wu, H., Syafira, S. A., Oghama, O. E., McFiggans, G., Hamilton, J. F., and Rickard, A. R.: The importance of burning conditions on the composition of domestic biomass-burning organic aerosol and the impact of atmospheric ageing, Atmos. Chem. Phys., 25, 4367–4389, https://doi.org/10.5194/acp-25-4367-2025, 2025.
Fleming, L. T., Lin, P., Laskin, A., Laskin, J., Weltman, R., Edwards, R. D., Arora, N. K., Yadav, A., Meinardi, S., Blake, D. R., Pillarisetti, A., Smith, K. R., and Nizkorodov, S. A.: Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India, Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, 2018.
Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokelson, R., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol, Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, 2020.
Gadaleta, D., Vuković, K., Toma, C., Lavado, G. J., Karmaus, A. L., Mansouri, K., Kleinstreuer, N. C., Benfenati, E., and Roncaglioni, A.: SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data, J. Cheminformatics., 11, 58, https://doi.org/10.1186/s13321-019-0383-2, 2019.
Gao, P., Deng, R., Jia, S., Li, Y., Wang, X., and Xing, Q.: Effects of combustion temperature on the optical properties of brown carbon from biomass burning, J. Environ. Sci., 137, 302–309, https://doi.org/10.1016/j.jes.2022.12.026, 2024.
Go, B. R., Li, Y. J., Huang, D. D., and Chan, C. K.: Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems, Environ. Sci. Technol., 58, 7924–7936, https://doi.org/10.1021/acs.est.3c10199, 2024.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Köll, P., and Andreae, M. O.: Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS, J. Geophys. Res.-Atmos., 107, LBA 14-11–LBA 14-16, https://doi.org/10.1029/2001JD000336, 2002.
Hartner, E., Gawlitta, N., Gröger, T., Orasche, J., Czech, H., Geldenhuys, G.-L., Jakobi, G., Tiitta, P., Yli-Pirilä, P., Kortelainen, M., Sippula, O., Forbes, P., and Zimmermann, R.: Chemical Fingerprinting of Biomass Burning Organic Aerosols from Sugar Cane Combustion: Complementary Findings from Field and Laboratory Studies, ACS Earth Space Chem., 8, 533–546, https://doi.org/10.1021/acsearthspacechem.3c00301, 2024.
Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light Absorption, ACS Earth Space Chem., 2, 225–234, https://doi.org/10.1021/acsearthspacechem.7b00123, 2018.
Hems, R. F., Schnitzler, E. G., Bastawrous, M., Soong, R., Simpson, A. J., and Abbatt, J. P. D.: Aqueous Photoreactions of Wood Smoke Brown Carbon, ACS Earth Space Chem., 4, 1149–1160, https://doi.org/10.1021/acsearthspacechem.0c00117, 2020.
Herraiz, T. and Galisteo, J.: Hydroxyl radical reactions and the radical scavenging activity of β-carboline alkaloids, Food Chem., 172, 640–649, https://doi.org/10.1016/j.foodchem.2014.09.091, 2015.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Heuckeroth, S., Damiani, T., Smirnov, A., Mokshyna, O., Brungs, C., Korf, A., Smith, J. D., Stincone, P., Dreolin, N., Nothias, L.-F., Hyötyläinen, T., Orešič, M., Karst, U., Dorrestein, P. C., Petras, D., Du, X., van der Hooft, J. J. J., Schmid, R., and Pluskal, T.: Reproducible mass spectrometry data processing and compound annotation in MZmine 3, Nat. Protoc., 19, 2597–2641, https://doi.org/10.1038/s41596-024-00996-y, 2024.
Hohrenk, L. L., Itzel, F., Baetz, N., Tuerk, J., Vosough, M., and Schmidt, T. C.: Comparison of Software Tools for Liquid Chromatography-High-Resolution Mass Spectrometry Data Processing in Nontarget Screening of Environmental Samples, Anal. Chem., 92, 1898–1907, https://doi.org/10.1021/acs.analchem.9b04095, 2020.
Hu, D. and Yu, J. Z.: Secondary organic aerosol tracers and malic acid in Hong Kong: seasonal trends and origins, Environ. Chem., 10, 381–394, 2013.
Huang, R.-J., Yang, L., Shen, J., Yuan, W., Gong, Y., Ni, H., Duan, J., Yan, J., Huang, H., You, Q., and Li, Y. J.: Chromophoric Fingerprinting of Brown Carbon from Residential Biomass Burning, Environ. Sci. Technol. Lett., 9, 102–111, https://doi.org/10.1021/acs.estlett.1c00837, 2022.
Hulleman, T., Turkina, V., O'Brien, J. W., Chojnacka, A., Thomas, K. V., and Samanipour, S.: Critical Assessment of the Chemical Space Covered by LC–HRMS Non-Targeted Analysis, Environ. Sci. Technol., 57, 14101–14112, https://doi.org/10.1021/acs.est.3c03606, 2023.
Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., and Shen, G.: Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives, Particuology, 85, 296–309, https://doi.org/10.1016/j.partic.2023.07.012, 2024.
Jiang, W., Misovich, M. V., Hettiyadura, A. P. S., Laskin, A., McFall, A. S., Anastasio, C., and Zhang, Q.: Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase – Chemical Evolution and Light Absorption Properties of AqSOA, Environ. Sci. Technol., 55, 5199–5211, https://doi.org/10.1021/acs.est.0c07581, 2021.
Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024.
Kahn, R. A., Andrews, E., Brock, C. A., Chin, M., Feingold, G., Gettelman, A., Levy, R. C., Murphy, D. M., Nenes, A., Pierce, J. R., Popp, T., Redemann, J., Sayer, A. M., da Silva, A. M., Sogacheva, L., and Stier, P.: Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within-The-Atmosphere Observations: A Three-Way Street, Rev. Geophys., 61, e2022RG000796, https://doi.org/10.1029/2022RG000796, 2023.
Kawamoto, H.: Lignin pyrolysis reactions, J. Wood Sci., 63, 117–132, 2017.
Khan, F., Kwapiszewska, K., Zhang, Y., Chen, Y., Lambe, A. T., Kołodziejczyk, A., Jalal, N., Rudzinski, K., Martínez-Romero, A., Fry, R. C., Surratt, J. D., and Szmigielski, R.: Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines, Chem. Res. Toxicol, 34, 817–832, https://doi.org/10.1021/acs.chemrestox.0c00409, 2021.
Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Rapid Commun. Mass Spectrom., 20, 926–932, https://doi.org/10.1002/rcm.2386, 2006.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., and Bluhm, H.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133–139, 2011.
Kruve, A.: Semi-quantitative non-target analysis of water with liquid chromatography/high-resolution mass spectrometry: How far are we?, Rapid Commun. Mass Spectrom., 33, 54–63, 2019.
Kuang, X. M., Gonzalez, D. H., Scott, J. A., Vu, K., Hasson, A., Charbouillot, T., Hawkins, L., and Paulson, S. E.: Cloud Water Chemistry Associated with Urban Aerosols: Rapid Hydroxyl Radical Formation, Soluble Metals, Fe(II), Fe(III), and Quinones, ACS Earth Space Chem., 4, 67–76, https://doi.org/10.1021/acsearthspacechem.9b00243, 2020.
Kumar, B., Schumacher, J., and Shaw, R. A.: Cloud microphysical effects of turbulent mixing and entrainment, Theor. Comput. Fluid Dyn., 27, 361–376, https://doi.org/10.1007/s00162-012-0272-z, 2013.
Lai, Z., Tsugawa, H., Wohlgemuth, G., Mehta, S., Mueller, M., Zheng, Y., Ogiwara, A., Meissen, J., Showalter, M., Takeuchi, K., Kind, T., Beal, P., Arita, M., and Fiehn, O.: Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics, Nat. Methods, 15, 53–56, https://doi.org/10.1038/nmeth.4512, 2018.
Laskin, A., West, C. P., and Hettiyadura, A. P. S.: Molecular insights into the composition, sources, and aging of atmospheric brown carbon, Chem. Soc. Rev., 54, 1583–1612, https://doi.org/10.1039/D3CS00609C, 2025.
Laszakovits, J. R. and MacKay, A. A.: Data-based chemical class regions for Van Krevelen diagrams, J. Am. Soc. Mass Spectrom., 33, 198–202, 2021.
Lei, R., Sha, Y., Meng, H., Huang, Y., Ye, J., Huang, D. D., Zhang, Y., Wu, Y., Li, Y., and Ge, X.: Aqueous phase photolysis of 4-nitrocatechol: Reaction kinetics, evolutions of chemical composition, light absorption and oxidation potential, Atmos. Environ., 343, 120981, https://doi.org/10.1016/j.atmosenv.2024.120981, 2025.
Li, L., Han, Y., Li, J., Lin, Y., Zhang, X., Wang, Q., and Cao, J.: Effects of photochemical aging on the molecular composition of organic aerosols derived from agricultural biomass burning in whole combustion process, Sci. Total Environ., 946, 174152, https://doi.org/10.1016/j.scitotenv.2024.174152, 2024.
Li, S., Zhang, H., Wang, Z., and Chen, Y.: Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate, Aerosol Air Qual. Res., 23, 220336, https://doi.org/10.4209/aaqr.220336, 2023.
Li, W., Ge, P., Chen, M., Tang, J., Cao, M., Cui, Y., Hu, K., and Nie, D.: Tracers from Biomass Burning Emissions and Identification of Biomass Burning, Atmosphere, 12, 1401, https://doi.org/10.3390/atmos12111401, 2021a.
Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S. S., and Fiehn, O.: Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification, Nat. Methods, 18, 1524–1531, 2021b.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824, https://doi.org/10.1021/acs.est.6b03024, 2016.
Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization, Anal. Chem., 90, 12493–12502, https://doi.org/10.1021/acs.analchem.8b02177, 2018.
Liu, D., He, C., Schwarz, J. P., and Wang, X.: Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere, Npj Clim. Atmos. Sci., 3, 40, https://doi.org/10.1038/s41612-020-00145-8, 2020.
Liu, Y., Chen, J., Shi, Y., Zheng, W., Shan, T., and Wang, G.: Global Emissions Inventory from Open Biomass Burning (GEIOBB): utilizing Fengyun-3D global fire spot monitoring data, Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, 2024.
Ma, Y.-J., Xu, Y., Yang, T., Xiao, H.-W., and Xiao, H.-Y.: Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials, Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, 2024.
Majewska, M., Khan, F., Pieta, I. S., Wróblewska, A., Szmigielski, R., and Pieta, P.: Toxicity of selected airborne nitrophenols on eukaryotic cell membrane models, Chemosphere, 266, 128996, https://doi.org/10.1016/j.chemosphere.2020.128996, 2021.
Mallmann, L. P., O. Rios, A., and Rodrigues, E.: MS-FINDER and SIRIUS for phenolic compound identification from high-resolution mass spectrometry data, Int. Food Res., 163, 112315, https://doi.org/10.1016/j.foodres.2022.112315, 2023.
Malm, L., Palm, E., Souihi, A., Plassmann, M., Liigand, J., and Kruve, A.: Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS, Molecules, 26, 3524, https://doi.org/10.3390/molecules26123524, 2021.
Mansouri, K., Grulke, C. M., Judson, R. S., and Williams, A. J.: OPERA models for predicting physicochemical properties and environmental fate endpoints, J. Cheminformatics., 10, 10, https://doi.org/10.1186/s13321-018-0263-1, 2018.
Mansouri, K., Karmaus, A. L., Fitzpatrick, J., Patlewicz, G., Pradeep, P., Alberga, D., Alepee, N., Allen, T. E., Allen, D., and Alves, V. M.: CATMoS: collaborative acute toxicity modeling suite, Environ. Health Perspect., 129, 047013, https://doi.org/10.1289/EHP8495, 2021.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity, Nat. Commun., 9, 3446, https://doi.org/10.1038/s41467-018-05635-1, 2018.
Merel, S.: Critical assessment of the Kendrick mass defect analysis as an innovative approach to process high resolution mass spectrometry data for environmental applications, Chemosphere, 313, 137443, https://doi.org/10.1016/j.chemosphere.2022.137443, 2023.
Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes, Chem. Rev., 115, 4400–4439, https://doi.org/10.1021/cr5005259, 2015.
MoNa [data set]: Downloads, https://mona.fiehnlab.ucdavis.edu/downloads (last access date: 8 August 2024), 2024.
Moschos, V., Christensen, C., Mouton, M., Fiddler, M. N., Isolabella, T., Mazzei, F., Massabò, D., Turpin, B. J., Bililign, S., and Surratt, J. D.: Quantifying the Light-Absorption Properties and Molecular Composition of Brown Carbon Aerosol from Sub-Saharan African Biomass Combustion, Environ. Sci. Technol., 58, 4268–4280, https://doi.org/10.1021/acs.est.3c09378, 2024.
MS-DIAL: MS-DIAL metabolomics MSP spectral kit containing EI-MS, MS/MS, and CCS values, https://systemsomicslab.github.io/compms/msdial/main.html#MSP, last access: 8 August 2024.
Narukawa, M., Kawamura, K., Takeuchi, N., and Nakajima, T.: Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires, Geophys. Res. Lett., 26, 3101–3104, 1999.
Ng, B.: Non-Target Analysis Using High-Resolution Mass Spectrometry to Characterize and Remediate Urban Waters, https://digitalcommons.fiu.edu/etd/4856/, 2021.
Nihill, K. J., Coggon, M. M., Lim, C. Y., Koss, A. R., Yuan, B., Krechmer, J. E., Sekimoto, K., Jimenez, J. L., de Gouw, J., Cappa, C. D., Heald, C. L., Warneke, C., and Kroll, J. H.: Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions, Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, 2023.
Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry, Phys. Chem. Chem. Phys., 13, 3612–3629, https://doi.org/10.1039/c0cp02032j, 2011.
Noblet, C., Lestremau, F., Collet, S., Chatellier, C., Beaumont, J., Besombes, J. L., and Albinet, A.: Aerosolomics based approach to discover source molecular markers: A case study for discriminating residential wood heating vs garden green waste burning emission sources, Chemosphere, 352, 141242, https://doi.org/10.1016/j.chemosphere.2024.141242, 2024.
Oros, D. R. and Simoneit, B. R. T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees, Appl. Geochem., 16, 1545–1565, https://doi.org/10.1016/S0883-2927(01)00022-1, 2001.
Oros, D. R., Abas, M. R. b., Omar, N. Y. M. J., Rahman, N. A., and Simoneit, B. R. T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses, Appl. Geochem., 21, 919–940, https://doi.org/10.1016/j.apgeochem.2006.01.008, 2006.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global biomass burning emission datasets: intercomparison and application in one global aerosol model, Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, 2020.
Pang, Z., Lu, Y., Zhou, G., Hui, F., Xu, L., Viau, C., Spigelman, Aliya F., MacDonald, Patrick E., Wishart, David S., Li, S., and Xia, J.: MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation, Nucleic Acids Res., 52, W398–W406, https://doi.org/10.1093/nar/gkae253, 2024.
Paulson, S. E., Gallimore, P. J., Kuang, X. M., Chen, J. R., Kalberer, M., and Gonzalez, D. H.: A light-driven burst of hydroxyl radicals dominates oxidation chemistry in newly activated cloud droplets, Sci. Adv., 5, eaav7689, https://doi.org/10.1126/sciadv.aav7689, 2019.
Pflieger, M. and Kroflič, A.: Acute toxicity of emerging atmospheric pollutants from wood lignin due to biomass burning, J. Hazard. Mater., 338, 132–139, https://doi.org/10.1016/j.jhazmat.2017.05.023, 2017.
Pieke, E. N., Granby, K., Trier, X., and Smedsgaard, J.: A framework to estimate concentrations of potentially unknown substances by semi-quantification in liquid chromatography electrospray ionization mass spectrometry, Anal. Chim. Acta, 975, 30–41, https://doi.org/10.1016/j.aca.2017.03.054, 2017.
Pokhrel, R. P., Gordon, J., Fiddler, M. N., and Bililign, S.: Determination of Emission Factors of Pollutants From Biomass Burning of African Fuels in Laboratory Measurements, J. Geophys. Res., 126, e2021JD034731, https://doi.org/10.1029/2021jd034731, 2021.
Priestley, M., Kong, X., Pei, X., Pathak, R. K., Davidsson, K., Pettersson, J. B. C., and Hallquist, M.: Volatility Measurements of Oxygenated Volatile Organics from Fresh and Aged Residential Wood Burning Emissions, ACS Earth Space Chem., 8, 159–173, https://doi.org/10.1021/acsearthspacechem.3c00066, 2024.
Rivera-Pérez, A. and Garrido Frenich, A.: Comparison of data processing strategies using commercial vs. open-source software in GC-Orbitrap-HRMS untargeted metabolomics analysis for food authentication: thyme geographical differentiation and marker identification as a case study, Anal. Bioanal. Chem., 416, 4039–4055, https://doi.org/10.1007/s00216-024-05347-0, 2024.
Russo, F. F., Nowatzky, Y., Jaeger, C., Parr, M. K., Benner, P., Muth, T., and Lisec, J.: Machine learning methods for compound annotation in non-targeted mass spectrometry – A brief overview of fingerprinting, in silico fragmentation and de novo methods, Rapid Commun. Mass Spectrom., 38, e9876, https://doi.org/10.1002/rcm.9876, 2024.
Růžičková, J., Raclavská, H., Šafář, M., Kucbel, M., Raclavský, K., Grobelak, A., Švédová, B., and Juchelková, D.: The occurrence of pesticides and their residues in char produced by the combustion of wood pellets in domestic boilers, Fuel, 293, 120452, https://doi.org/10.1016/j.fuel.2021.120452, 2021.
Saleh, R.: From Measurements to Models: Toward Accurate Representation of Brown Carbon in Climate Calculations, Curr. Pollut. Rep., 6, 90–104, https://doi.org/10.1007/s40726-020-00139-3, 2020.
Sanches-Neto, F. O., Dias-Silva, J. R., Keng Queiroz Junior, L. H., and Carvalho-Silva, V. H.: “pySiRC”: Machine Learning Combined with Molecular Fingerprints to Predict the Reaction Rate Constant of the Radical-Based Oxidation Processes of Aqueous Organic Contaminants, Environ. Sci. Technol., 55, 12437–12448, https://doi.org/10.1021/acs.est.1c04326, 2021.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sarang, K., Otto, T., Rudzinski, K., Schaefer, T., Grgić, I., Nestorowicz, K., Herrmann, H., and Szmigielski, R.: Reaction Kinetics of Green Leaf Volatiles with Sulfate, Hydroxyl, and Nitrate Radicals in Tropospheric Aqueous Phase, Environ. Sci. Technol., 55, 13666–13676, https://doi.org/10.1021/acs.est.1c03276, 2021.
Schmid, R., Heuckeroth, S., Korf, A., Smirnov, A., Myers, O., Dyrlund, T. S., Bushuiev, R., Murray, K. J., Hoffmann, N., Lu, M., Sarvepalli, A., Zhang, Z., Fleischauer, M., Dührkop, K., Wesner, M., Hoogstra, S. J., Rudt, E., Mokshyna, O., Brungs, C., Ponomarov, K., Mutabdžija, L., Damiani, T., Pudney, C. J., Earll, M., Helmer, P. O., Fallon, T. R., Schulze, T., Rivas-Ubach, A., Bilbao, A., Richter, H., Nothias, L.-F., Wang, M., Orešič, M., Weng, J.-K., Böcker, S., Jeibmann, A., Hayen, H., Karst, U., Dorrestein, P. C., Petras, D., Du, X., and Pluskal, T.: Integrative analysis of multimodal mass spectrometry data in MZmine 3, Nature Biotechnology, 41, 447–449, https://doi.org/10.1038/s41587-023-01690-2, 2023.
Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., and Hollender, J.: Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence, Environ. Sci. Technol., 48, 2097–2098, https://doi.org/10.1021/es5002105, 2014.
Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018.
Sengupta, D., Samburova, V., Bhattarai, C., Watts, A. C., Moosmüller, H., and Khlystov, A. Y.: Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor, Atmos. Chem. Phys., 20, 8227–8250, https://doi.org/10.5194/acp-20-8227-2020, 2020.
Seo, I., Lee, K., Bae, M. S., Park, M., Maskey, S., Seo, A., Borlaza, L. J. S., Cosep, E. M. R., and Park, K.: Comparison of physical and chemical characteristics and oxidative potential of fine particles emitted from rice straw and pine stem burning, Environ. Pollut., 267, 115599, https://doi.org/10.1016/j.envpol.2020.115599, 2020.
Shahid, I., Kistler, M., Shahid, M. Z., and Puxbaum, H.: Aerosol Chemical Characterization and Contribution of Biomass Burning to Particulate Matter at a Residential Site in Islamabad, Pakistan, Aerosol Air Qual. Res., 19, 148–162, https://doi.org/10.4209/aaqr.2017.12.0573, 2019.
Shen, M., Ho, K. F., Dai, W., Liu, S., Zhang, T., Wang, Q., Meng, J., Chow, J. C., Watson, J. G., Cao, J., and Li, J.: Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols, Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, 2022.
Siemens, K., Morales, A., He, Q., Li, C., Hettiyadura, A. P. S., Rudich, Y., and Laskin, A.: Molecular Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene, Environ. Sci. Technol., 56, 3340–3353, https://doi.org/10.1021/acs.est.1c03135, 2022.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for smoke from incomplete combustion, Appl. Geochem., 17, 129–162, https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Sinha, A., George, I., Holder, A., Preston, W., Hays, M., and Grieshop, A. P.: Development of Volatility Distributions for Organic Matter in Biomass Burning Emissions, Environ. Sci. Atmos., 3, 11–23, https://doi.org/10.1039/d2ea00080f, 2023.
Smith, D. M., Cui, T., Fiddler, M. N., Pokhrel, R. P., Surratt, J. D., and Bililign, S.: Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 2: Chemical properties and characterization, Atmos. Chem. Phys., 20, 10169–10191, https://doi.org/10.5194/acp-20-10169-2020, 2020.
Smith, J. S., Laskin, A., and Laskin, J.: Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry, Anal. Chem., 81, 1512–1521, 2009.
Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P.: Molecular Characterization of Water-Soluble Humic like Substances in Smoke Particles Emitted from Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575–2585, https://doi.org/10.1021/acs.est.7b06126, 2018.
Stubenrauch, J. and Garske, B.: Forest protection in the EU's renewable energy directive and nature conservation legislation in light of the climate and biodiversity crisis – Identifying legal shortcomings and solutions, For. Policy Econ., 153, 102996, https://doi.org/10.1016/j.forpol.2023.102996, 2023.
Su, H., Cheng, Y., and Pöschl, U.: New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene, Acc. Chem. Res., 53, 2034–2043, https://doi.org/10.1021/acs.accounts.0c00246, 2020.
Su, Q.-Z., Vera, P., and Nerín, C.: Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles, Anal. Chem., 95, 8780–8788, https://doi.org/10.1021/acs.analchem.2c05389, 2023.
Sun, M., Glenn, C. K., El Hajj, O., Kumar, K. V., Anosike, A., Penland, R., Callaham, M. A., Jr., Loudermilk, E. L., O'Brien, J. J., Saleh, R., and Smith, G. D.: Aqueous Photolysis of Water-Soluble Brown Carbon from Simulated Prescribed and Wildfire Biomass Burning, ACS ES&T Air, 1, 989–999, https://doi.org/10.1021/acsestair.4c00016, 2024.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020.
Tomlin, A. S.: Air Quality and Climate Impacts of Biomass Use as an Energy Source: A Review, Energy & Fuels, 35, 14213–14240, https://doi.org/10.1021/acs.energyfuels.1c01523, 2021.
Trubetskaya, A.: Reactivity Effects of Inorganic Content in Biomass Gasification: A Review, Energies, 15, 3137, https://doi.org/10.3390/en15093137, 2022.
Tsigaridis, K. and Kanakidou, M.: The Present and Future of Secondary Organic Aerosol Direct Forcing on Climate, Curr. Clim. Change Rep., 4, 84–98, https://doi.org/10.1007/s40641-018-0092-3, 2018.
Tsugawa, H., Kanazawa, M., Ogiwara, A., and Arita, M.: MRMPROBS suite for metabolomics using large-scale MRM assays, Bioinformatics, 30, 2379–2380, https://doi.org/10.1093/bioinformatics/btu203, 2014.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., and Arita, M.: MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis, Nat Methods, 12, 523–526, https://doi.org/10.1038/nmeth.3393, 2015.
Tsugawa, H., Kind, T., Nakabayashi, R., Yukihira, D., Tanaka, W., Cajka, T., Saito, K., Fiehn, O., and Arita, M.: Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software, Anal. Chem., 88, 7946–7958, https://doi.org/10.1021/acs.analchem.6b00770, 2016.
Vaniya, A., Samra, S. N., Palazoglu, M., Tsugawa, H., and Fiehn, O.: Using MS-FINDER for identifying 19 natural products in the CASMI 2016 contest, Phytochem. Lett., 21, 306–312, https://doi.org/10.1016/j.phytol.2016.12.008, 2017.
Vosough, M., Schmidt, T. C., and Renner, G.: Non-target screening in water analysis: recent trends of data evaluation, quality assurance, and their future perspectives, Anal. Bioanal. Chem., 416, 2125–2136, https://doi.org/10.1007/s00216-024-05153-8, 2024.
Wan, X., Kawamura, K., Ram, K., Kang, S., Loewen, M., Gao, S., Wu, G., Fu, P., Zhang, Y., Bhattarai, H., and Cong, Z.: Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review, Environ. Pollut. , 247, 216–228, https://doi.org/10.1016/j.envpol.2019.01.028, 2019.
Wang, F., Liigand, J., Tian, S., Arndt, D., Greiner, R., and Wishart, D. S.: CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification, Anal. Chem., 93, 11692–11700, https://doi.org/10.1021/acs.analchem.1c01465, 2021.
Wartmann, Y., Boxler, M. I., Kraemer, T., and Steuer, A. E.: Impact of three different peak picking software tools on the quality of untargeted metabolomics data, J. Pharm. Biomed. Anal., 248, 116302, https://doi.org/10.1016/j.jpba.2024.116302, 2024.
Wei, M., Xu, C., Xu, X., Zhu, C., Li, J., and Lv, G.: Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain, Sci. Total Environ., 651, 2727–2739, https://doi.org/10.1016/j.scitotenv.2018.09.399, 2019.
Witkowski, B., Jain, P., and Gierczak, T.: Aqueous chemical bleaching of 4-nitrophenol brown carbon by hydroxyl radicals; products, mechanism, and light absorption, Atmos. Chem. Phys., 22, 5651–5663, https://doi.org/10.5194/acp-22-5651-2022, 2022.
Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M., Sciare, J., Nenes, A., and Weber, R. J.: Effects of Atmospheric Processing on the Oxidative Potential of Biomass Burning Organic Aerosols, Environ. Sci. Technol., 53, 6747–6756, https://doi.org/10.1021/acs.est.9b01034, 2019.
Yadav, I. C. and Devi, N. L.: Biomass Burning, Regional Air Quality, and Climate Change, in: Encyclopedia of Environmental Health (Second Edition), edited by: Nriagu, J., Elsevier, Oxford, 386–391, https://doi.org/10.1016/B978-0-12-409548-9.11022-X, 2019.
Yadav, S., Kapoor, T. S., Vernekar, P., and Phuleria, H. C.: Examining the Chemical and Optical Properties of Biomass-burning Aerosols and their Impact on Oxidative Potential, Aerosol Air Qual. Res., 23, 230102, https://doi.org/10.4209/aaqr.230102, 2023.
Yang, Y., Li, C., Yang, L., Zheng, M., and Liu, G.: Application of non-target screening by high-resolution mass spectrometry to identification and control of new contaminants: Implications for sustainable industrial development, Sustainable Horizons, 5, 100049, https://doi.org/10.1016/j.horiz.2023.100049, 2023.
Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P. S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13, 8019–8043, https://doi.org/10.5194/acp-13-8019-2013, 2013.
Young, T. M., Black, G. P., Wong, L., Bloszies, C. S., Fiehn, O., He, G., Denison, M. S., Vogel, C. F. A., and Durbin-Johnson, B.: Identifying Toxicologically Significant Compounds in Urban Wildfire Ash Using In Vitro Bioassays and High-Resolution Mass Spectrometry, Environ. Sci. Technol., 55, 3657–3667, https://doi.org/10.1021/acs.est.0c06712, 2021.
Zhang, L., Li, J., Li, Y., Liu, X., Luo, Z., Shen, G., and Tao, S.: Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions, Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, 2024.
Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-6087-2015, 2015.
Zherebker, A., Babcock, O., Pereira, D. L., D'Aronco, S., Filippi, D., Soldà, L., Michoud, V., Gratien, A., Cirtog, M., and Cantrell, C.: Decreasing the Uncertainty in the Comparison of Molecular Fingerprints of Organic Aerosols with H/D Exchange Mass Spectrometry, Environ. Sci. Technol., 58, 20468–20479, 2024.
Zhou, Y., West, C. P., Hettiyadura, A. P. S., Niu, X., Wen, H., Cui, J., Shi, T., Pu, W., Wang, X., and Laskin, A.: Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China, Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, 2021.
Short summary
This article provides new insights into the molecular composition of fine, light-absorbing organic aerosols emitted by biomass burning. Laboratory-generated aerosol was extracted into water and analyzed with liquid chromatography-mass spectrometry, identifying over 350 new water-soluble wood-burning tracers. This study also examines the toxicities and atmospheric lifetimes, revealing that the newly identified molecules are harmful and can undergo chemical processing in atmospheric hydrometeors.
This article provides new insights into the molecular composition of fine, light-absorbing...
Altmetrics
Final-revised paper
Preprint