Articles | Volume 25, issue 18
https://doi.org/10.5194/acp-25-10499-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-10499-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Seasonal trends and chemical speciation of chromium(III/VI) in different fractions of urban particulate matter – a case study of Radom, Poland
Monika Łożyńska
CORRESPONDING AUTHOR
Łukasiewicz Research Network – Institute for Sustainable Technologies, Bioeconomy and Ecoinnovation Centre, 26-600 Radom, Pulaskiego 6/10, Poland
Marzena Trojanowska
Faculty of Applied Chemistry, Casimir Pulaski Radom University, 26-600 Radom, Chrobrego 27, Poland
Artur Molik
Faculty of Applied Chemistry, Casimir Pulaski Radom University, 26-600 Radom, Chrobrego 27, Poland
Ryszard Świetlik
Faculty of Applied Chemistry, Casimir Pulaski Radom University, 26-600 Radom, Chrobrego 27, Poland
Cited articles
Anake, W. U., Benson, N. U., Tenebe, I. T., Emenike, P. Ch., Ana, G. R. E. E., and Zhang S.: Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria, Hum. Ecol. Risk Assess., 26, 242–254, https://doi.org/10.1080/10807039.2018.1504672, 2020.
Arhami, M., Hosseini, V., Shahne, M. Z., Bigdeli, M., Lai, A., and Schauer, J. J.: Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran, Atmos. Environ., 153, 70–82, https://doi.org/10.1016/j.atmosenv.2016.12.046, 2017.
Barceloux, D. G. and Barceloux, D.: Chromium, J. Toxicol. Clin. Toxicol., 37, 173–94, https://doi.org/10.1081/CLT-100102418, 1999.
Bell, R. W. and Hipfner, J. C.: Airborne Hexavalent Chromium in Southwestern Ontario, J. Air Waste Manage., 47, 905–910, https://doi.org/10.1080/10473289.1997.10464454, 1997.
Canepari, S., Pietrodangelo, A., Perrino, C., Astolfi, M. L., and Marzo M. L.: Enhancement of source traceability of atmospheric PM by elemental chemical fractionation, Atmos. Environ., 43, 4754–4765, https://doi.org/10.1016/j.atmosenv.2008.09.059, 2009.
Catrambone, M., Canepari, S., and Perrino C.: Determination of Cr(III), Cr(VI) and total chromium in atmospheric aerosol samples, E3S Web of Conferences 2013, 1, 07005, https://doi.org/10.1051/e3sconf/20130107005, 2013.
Conca, E., Malandrino, M., Giacomino, A., Costa, E., Ardini, F., Inaudi, P., and Abollino, O.: Optimization of a sequential extraction procedure for trace elements in Arctic PM10, Anal. Bioanal. Chem., 412, 7429–7440, https://doi.org/10.1007/s00216-020-02874-4, 2020.
Diana, A., Bertinetti, S., Abollino, O., Giacomino, A., Buoso, S., Favilli, L., Inaudi, P., and Malandrino, M.: PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities, Atmosphere, 14, 48, https://doi.org/10.3390/atmos14010048, 2023.
Directive (EU) 2017/2398: Directive (EU) 2017/2398 of the European Parliament and of the Council of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work, Official Journal of the European Union, L 345/87, 2017.
Directive (EU) 2024/2881: Directive (EU) 2024/2881 of the European Parliament and of the Council on ambient air quality and cleaner air for Europe, Official Journal of the European Union, 32024L2881, 2024.
Dos Santos, M., Gómez, D., Dawidowski, L., Gautiera, E., and Smichowski, P.: Determination of water-soluble and insoluble compounds in size classified airborne particulate matter, Microchem. J., 91, 133–139, https://doi.org/10.1016/j.microc.2008.09.001, 2009.
EU Clean Air Program: European Funds for Infrastructure, Climate, Environment, https://czystepowietrze.gov.pl/, last access: 23 April 2025.
Fang, G. C., Wu, Y. S., Wen, C. C., Lin, C. K., Huang, S. H., Rau, J. H., and Lin, Ch. P.: Concentrations of nano and related ambient air pollutants at a traffic sampling site, Toxicol. Ind. Health, 21, 259–271, https://doi.org/10.1191/0748233705th234oa, 2005.
Feng, X. D., Dang, Z., Huang, W. L., and Yang, C.: Chemical speciation of fine particle bound trace metals, Int. J. Environ. Sci. Te., 6, 337–346, https://doi.org/10.1007/BF03326071, 2009.
Gunchin, G., Osan, J., Migliori, A., Shagjjamba, D., and Streli, C.: Chromium and Zinc Speciation in Airborne Particulate Matter Collected in Ulaanbaatar, Mongolia, by X-Ray Absorption Near-edge Structure Spectroscopy, Aerosol Air Qual. Res., 21, 8, 210018, https://doi.org/10.4209/aaqr.210018, 2021.
Heal, M. R., Hibbs, L. R., Agius, R. M., Beverland, I. J.: Total and water-soluble trace metal content of urban background PM10, PM2.5 and Black Smoke in Edinburgh, U.K, Atmos. Environ., 39, 1417–1430, https://doi.org/10.1016/j.atmosenv.2004.11.026, 2005.
Huang, L., Yu, C. H., Hopke, P. K., Lioy, P. J., Buckley, B. T., Shin, J. Y., and Fan, Z.: Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey, Aerosol Air Qual. Res., 14, 1939–1949, https://doi.org/10.4209/aaqr.2013.10.0312, 2014a.
Huang, L., Yu, C. H., Hopke, P. K., Shin, J. Y., and Fan, Z.: Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800, J. Air Waste Manage., 64, 1439–1445, https://doi.org/10.1080/10962247.2014.951745, 2014b.
IARC: Chromium(VI) compounds, IARC Monographs on the evaluation carcinogenic risk to humans, IARC Press, Lyon, 100C, ISBN 978-92-832-1320-8, 2012.
IARC: Agents Classified by the IARC Monographs, https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (last access: 21 April 2025), 2023.
Izhar, S., Goel, A., Chakraborty, A., and Gupta, T.: Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals, Chemosphere, 146, 582–590, https://doi.org/10.1016/j.chemosphere.2015.12.039, 2016.
Jan, R., Roy, R., Yadav, S., and Satsangi, P. G.: Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India, Environ. Geochem. Hlth., 40, 255–270, https://doi.org/10.1007/s10653-016-9900-7, 2018.
Kang, B. W., Lee, H. S., Kim, J. H., Hong, J. H., Kim, R. H., Seo, Y. K., Han, J. S., Baek, K. M., Kim, M. J., and Baek, S. O.: Distribution of Airborne Hexavalent Chromium Concentrations in Large Industrial Complexes in Korea, Asian J. Atmos. Environ., 10, 208–216, https://doi.org/10.5572/ajae.2016.10.4.208, 2016.
Katz, S. A.: The Analytical Biochemistry of Chromium, Environ. Health Persp., 92, 13–16. https://doi.org/10.1289/ehp.919213, 1991.
Khlystov, A. and Ma, Y.: An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air, Atmos. Environ., 40, 8088–8093, https://doi.org/10.1016/j.atmosenv.2006.09.030, 2006.
Kotaś, J. and Stasicka, Z.: Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107, 263–283, https://doi.org/10.1016/S0269-7491(99)00168-2, 2000.
Krzemińska-Flowers, M. H., Bem, H., and Górecka, H.: Trace metals concentration in size-fractioned urban air particulate matter in Lodz, Poland. I. Seasonal and site fluctuations, Pol. J. Environ. Stud., 15, 759–767, 2006.
Li, H., Wang, Q., Shao, M., Wang, J., Wang, C., Sun, Y., Qian, X., Wu, H., Yang, M., and Li, F.: Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China, Environ. Pollut., 208, 655–662, https://doi.org/10.1016/j.envpol.2015.10.042, 2016.
Li, Y. and Xue, H.: Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry, Anal. Chim. Acta, 448, 121e134, https://doi.org/10.1016/S0003-2670(01)01314-9, 2001.
Łożyńska, M., Trojanowska, M., Molik, A., and Świetlik, R.: Measurement Report: Seasonal trends and chemical speciation of chromium(III/VI) in different fractions of urban particulate matter – a case study of Radom, Poland, Zenodo, [data set], https://doi.org/10.5281/zenodo.14808852, 2025.
Majewski, G. and Rogula-Kozłowska, W.: The elemental composition and origin of fine ambient particles in the largest Polish conurbation: first results from the short-term winter campaign, Theor. Appl. Climatol., 125, 79–92, https://doi.org/10.1007/s00704-015-1494-y, 2016.
Ministry of Climate and Environment: National emission balance of SO2, NOX, CO, NH3, NMLZO, dust, heavy metals and POPs for the years 1990–2020, Synthetic Report, Warsaw, 2022.
Molik, A., Trojanowska, M., Łożyńska, M., and Świetlik, R.: Seasonal variations in chromium concentration in urban atmospheric aerosol in the city of Radom, E3S Web of Conferences 2018 – Air Protection in Theory and Practice, 28, 01024, 95, https://doi.org/10.1051/e3sconf/20182801024, 2018.
Muránszky, G., Ovari, M., Virág, I., Csiba, P., Dobai, R., and Záray, G.: Chemical characterization of PM10 fractions of urban aerosol, J. Microchem., 98, 1–10, https://doi.org/10.1016/j.microc.2010.10.002, 2011.
Nocoń, K., Rogula-Kozłowska, W., and Widziewicz, K.: Research on chromium and arsenic speciation in atmospheric particulate matter: short review, E3S Web of Conferences 2018 – Air Protection in Theory and Practice, 28, 01026, https://doi.org/10.1051/e3sconf/20182801026, 2018.
Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134–139, https://doi.org/10.1038/333134a0, 1988.
Nriagu, J. O. and Nieboer, E.: Chromium in the Natural and Human Environments, John Wiley & Sons, New York, 20, ISBN 978-0-471-85643-6, 1988.
Nriagu, J. O., Pacyna, J. M., Milford, J. B., and Davidson C. I.: Distribution and characteristic features of chromium in the atmosphere, in: Chromium in Natural and Human Environments, edited by: Nriagu, J. O. and Nieboer, E., Wiley, New York, 110,125, ISBN 978-0-471-85643-6, 1988.
Nusko, R. and Heumann, K. G.: Cr(III)/Cr(VI) speciation in aerosol particles by extractive separation and thermal ionization isotope dilution mass spectrometry, Fresen. J. Anal. Chem., 357, 1050–1055, https://doi.org/10.1007/s002160050303, 1997.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrząb, E., Hławiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., and Friedrich, R.: Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe, Atmos. Environ., 41, 8557–8566, https://doi.org/10.1016/j.atmosenv.2007.07.040, 2007.
Pacyna, J. M.: Atmospheric trace elements from natural and anthropogenic sources, in: Toxic Metals in the Atmosphere, edited by: Nriagu J. O. and Davidson, C. I., John Wiley & Sons, New York, ISBN 0471826545, 1986.
Pan, Y., Tian, S., Li, X., Sun, Y., Li, Y., Wentworth, G. R., and Wang, Y.: Trace elements in particulate matter from metropolitan regions of Northern China: sources, concentrations and size distributions, Sci. Total Environ., 537, 9–21, https://doi.org/10.1016/j.scitotenv.2015.07.060, 2015.
Pandey, M., Pandey, A. K., Mishra, A., and Tripathi, B. D.: Speciation of carcinogenic and non-carcinogenic metals in respirable suspended particulate matter (PM10) in Varanasi, India, Urban Climate, 17, 141–154, https://doi.org/10.1016/j.uclim.2017.01.004, 2017.
Park, K., Cho, G., and Kwak, J.: Development of an Aerosol Focusing-Laser Induced Breakdown Spectroscopy (Aerosol Focusing-LIBS) for Determination of Fine and Ultrafine Metal Aerosols, Aerosol. Sci. Tech., 43, 375–386. https://doi.org/10.1080/02786820802662947, 2009.
Proctor, D. M., Bhat, V., Suh, M., Reichert, H., Jiang, X., and Thompson, C. M.: Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches, Regul. Toxicol. Pharm., 124, 104969, https://doi.org/10.1016/j.yrtph.2021.104969, 2021.
Richter, P., Grino, P., Ahumada, I., and Giordano, A.: Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile, Atmos. Environ., 42, 6729–6738, https://doi.org/10.1016/j.atmosenv.2007.04.053, 2007.
Regulation of the Minister of the Environment: Regulation of the Minister of the Environment of 26 January 2010 on reference values for certain substances in the air, 2010, Poland, 2010.
Regulation of the Minister of the Environment: Regulation of the Minister of the Environment of 24 August 2012 on the levels of certain substances in the air, Journal of Laws, item 1031, Poland, 2012.
Regulation of the Minister of Industry and the Minister of Climate and Environment: Regulation of the Minister of Industry and the Minister of Climate and Environment of 4 November 2024 regarding quality requirements for solid fuels, TS35, Poland, 2024.
Rogula-Kozłowska, W.: Chemical composition and mass closure of ambient particulate matter at a crossroads and a highway in Katowice, Poland, Environ. Prot. Eng., 2, 15–29, https://doi.org/10.5277/epe150202, 2015.
Rogula-Kozłowska, W., Błaszczak, B., Szopa, S., Klejnowski, K., Sówka, I., Zwoździak, A., Jabłońska, M., and Mathews, B.: PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components, Environ. Monit. Assess., 185, 581–601, https://doi.org/10.1007/s10661-012-2577-1, 2013a.
Rogula-Kozłowska, W., Kozielska, B., Klejnowski, K., and Szopa, S.: Hazardous Compounds in Urban PM in the Central Part of Upper Silesia (Poland) in Winter, Arch. Environ. Prot., 39, 53–65, https://doi.org/10.2478/aep-2013-0002, 2013b.
Rubio, M. A., Sánchez, K., Richter, P., Pey, J., and Gramsch, E.: Partitioning of the water soluble versus insoluble fraction of trace elements in the city of Santiago, Chile, Atmosphere, 31, 373–387, https://doi.org/10.20937/ATM.2018.31.04.05, 2018.
Sah, D., Verma, P. K., Kandikonda, M. K., and Lakhani, A.: Chemical fractionation, bioavailability, and health risks of heavy metals in fine matter at a site in the Indo-Gangetic Plain, India, Environ. Sci. Pollut. R., 26, 19749–19762, https://doi.org/10.1007/s11356-019-05144-8, 2019.
Samara, C. and Voutsa, D.: Size distribution of airborne particulate matter and associated heavy metals in the roadside environment, Chemosphere, 59, 1197–1206, https://doi.org/10.1016/j.chemosphere.2004.11.061, 2005.
Samara, C., Kantiranis, N., Kollias, P., Planou, S., Kouras, A., Besis, A., Manoli, E., and Voutsa, D.: Spatial and seasonal variations of the chemical, mineralogical and morphological features of quasi-ultrafine particles (PM0.49) at urban sites, Sci. Total Environ., 553, 392–403, https://doi.org/10.1016/j.scitotenv.2016.02.080, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and 80 Physics – from Air Pollution to Climate Change, John Wiley & Sons, New York, ISBN 0471720178, 2006.
Somers, C. M.: Ambient air pollution exposure and damage to male gametes: human studies and in situ `sentinel' animal experiments, Syst. Biol. Reprod. Med., 57, 63–71, https://doi.org/10.3109/19396368.2010.500440, 2011.
Szigeti, T., Mihucz, V. G., Óvári, M., Baysal, A., Atilgan, S., Akman, S., and Záray, G.: Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul, Microchem. J., 107, 86–94, https://doi.org/10.1016/j.microc.2012.05.029, 2013.
Świetlik, R. and Trojanowska, M.: Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review, Toxics, 10, 124, https://doi.org/10.3390/toxics10030124, 2022.
Świetlik, R., Molik, A., Molenda, M., Trojanowska, M., and Siwiec, J.: Chromium(III/VI) speciation in urban aerosol, Atmos. Environ., 45, 1364–1368, https://doi.org/10.1016/j.atmosenv.2010.12.001, 2011.
Talebi, S. M.: Determination of total and hexavalent chromium concentrations in the atmosphere of the city of Isfahan, Environ. Res., 92, 54–56, https://doi.org/10.1016/S0013-9351(02)00036-1, 2003.
Tirez, K., Silversmit, G., Bleux, N., Adriaensens, E., Roekens, E., Servaes, K., Vanhoof, C., Vincze, L., and Berghmans, P.: Determination of hexavalent chromium in ambient air: A story of method induced Cr(III) oxidation, Atmos. Environ., 45, 5332–5341, https://doi.org/10.1016/j.atmosenv.2011.06.043, 2011.
Torkmahalleh, M. A., Yu, C. H., Lin, L., Fan, Z. T., Swift, J. L., Bonanno, L., Rasmussen, D. H., Holsen, T. M., and Hopke, P. K.: Improved Atmospheric Sampling of Hexavalent Chromium, J. Air Waste Manage., 63, 1313–1323, https://doi.org/10.1080/10962247.2013.823894, 2013.
US EPA: Risk Assessment Guidance for Superfund, Vol. I, Human Health Evaluation Manual (Part A), EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC, 20450, 1989.
US EPA: Method 3060A, Alkaline digestion for hexavalent chromium, 1996.
US EPA: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), Office of Superfund Remediation and Technology Innovation Environmental Protection Agency Washington, DC, 2009.
US EPA: Recommended Default Exposure Factors, US Environmental Protection Agency, February 2014.
US EPA: Regional Screening Levels (RSLs) – Generic Tables, https://semspub.epa.gov/work/HQ/403628.pdf (last access: 12 November 2022), 2022.
Wagner, A., Boman, J., and Gatari, M. J.: Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden, Spectrochim. Acta B, 63, 1426–1431, https://doi.org/10.1016/j.sab.2008.10.010, 2008.
Waheed, A., Li, X., Tan, M., Bao, L., Liu, J., Zhang, Y., Zhang, G., and Li, Y.: Size Distribution and Sources of Trace Metals in Ultrafine/Fine/Coarse Airborne Particles in the Atmosphere of Shanghai, Aerosol. Sci. Tech., 45, 163–171, https://doi.org/10.1080/02786826.2010.528079, 2011.
Wang, K., Wang, W., Li, L., Li, J., Wei, L., Chi, W., Hong, L., Zhao, Q., and Jiang, J.: Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply, Sci. Rep.-UK, 10, 8160, https://doi.org/10.1038/s41598-020-65187-7, 2020.
Wang, L., Guo, J., Zhang, W., Chen, B., Wang, H., and Li, H.: Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China, Atmosphere, 14, 209, https://doi.org/10.3390/atmos14020209, 2023.
Weather Spark: Weather Year Round Anywhere on Earth, https://pl.weatherspark.com/, last access: 28 April 2025.
WHO: Air Quality Guidelines for Europe, Geneva, Switzerland, 125–162, ISBN 9789289013581, 2000.
WHO: Health effects of particulate matter, Policy implications for countries in eastern Europe, Caucasus and Central Asia, ISBN 9789289000017, 2013.
WHO human health risk assessment toolkit: Chemical hazards, second edition, IPCS harmonization project document, no. 8, Geneva, Switzerland, ISBN 9789240035720, 2021.
Widziewicz, K., Rogula-Kozłowska, W., and Loska, K.: Cancer risk from arsenic and chromium species bound to PM2.5 and PM1. Polish case study, Atmos. Pollut. Res., 7, 884–894, https://doi.org/10.1016/j.apr.2016.05.002, 2016.
Wu, T., Liu, P., He, X., Xu, H., and Shen, Z.: Bioavailability of heavy metals bounded to PM2.5 in Xi'an, China: seasonal variation and health risk assessment, Environ. Sci. Pollut. R., 28, 35844–35853, https://doi.org/10.1007/s11356-021-13198-w, 2021.
Xie, J. J., Yuan, C. G., Xie, J., Shen, Y. W., He, K. Q., and Zhang, K. G.: Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China, Environ. Pollut., 252, 336–343, https://doi.org/10.1016/j.envpol.2019.04.106, 2019.
Zajusz-Zubek, E. and Mainka, A.: Analysis of Trace metals in the Mobile Form of Respirable Fraction PM2.5 Collected in the Surroundings of Power Plant, Engineering and Protection of Environment, 18, 245–258, 2015 (in Polish).
Zajusz-Zubek, E., Kaczmarek, K., and Mainka A.: Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants, Int. J. Env. Res. Pub. He., 12, 13085–13103. https://doi.org/10.3390/ijerph121013085, 2015.
Zajusz-Zubek, E., Radko, T., and Mainka, A.: Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants, Environ. Monit. Assess., 189, 389, https://doi.org/10.1007/s10661-017-6117-x, 2017.
Zwoździak, A., Sówka, I., Krupińska, B., Zwoździak, J., and Nych, A.: Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland, Build. Environ., 66, 173–180, https://doi.org/10.1016/j.buildenv.2013.04.023, 2013.
Short summary
An assessment of chromium occurrence in particulate matter – PM10, PM2.5, PM1, and PM0.25 – in the city of Radom during the calendar year was presented. The seasonality of both pseudo-total chromium content and its valence speciation was examined. The seasonality of changes in Crtot and Cr(VI) concentrations was observed. There was a maximum in the winter season, most likely due to the greater share of fuel combustion sources. Regardless of the season, the risk levels for Radom residents were within the acceptable risk range.
An assessment of chromium occurrence in particulate matter – PM10, PM2.5, PM1, and PM0.25 – in...
Altmetrics
Final-revised paper
Preprint