Articles | Volume 24, issue 17
https://doi.org/10.5194/acp-24-9749-2024
https://doi.org/10.5194/acp-24-9749-2024
Research article
 | 
04 Sep 2024
Research article |  | 04 Sep 2024

Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming

Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham

Related authors

Sensitivity of ice cloud radiative heating to optical, macro- and microphysical properties
Edgardo I. Sepulveda Araya, Sylvia C. Sullivan, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3212,https://doi.org/10.5194/egusphere-2024-3212, 2024
Short summary
A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: the dynamic TenStream solver v1.0
Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and Bernhard Mayer
Geosci. Model Dev., 17, 3357–3383, https://doi.org/10.5194/gmd-17-3357-2024,https://doi.org/10.5194/gmd-17-3357-2024, 2024
Short summary
Uncertainties in cloud-radiative heating within an idealized extratropical cyclone
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
Atmos. Chem. Phys., 24, 4751–4769, https://doi.org/10.5194/acp-24-4751-2024,https://doi.org/10.5194/acp-24-4751-2024, 2024
Short summary
Sea-ice thermodynamics can determine waterbelt scenarios for Snowball Earth
Johannes Hörner and Aiko Voigt
Earth Syst. Dynam., 15, 215–223, https://doi.org/10.5194/esd-15-215-2024,https://doi.org/10.5194/esd-15-215-2024, 2024
Short summary
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023,https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Improved calculation of single-scattering properties of frozen droplets and frozen-droplet aggregates observed in deep convective clouds
Jeonggyu Kim, Sungmin Park, Greg M. McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um
Atmos. Chem. Phys., 24, 12707–12726, https://doi.org/10.5194/acp-24-12707-2024,https://doi.org/10.5194/acp-24-12707-2024, 2024
Short summary
Influence of cloudy and clear-sky partitions, aerosols, and geometry on the recent variability in surface solar irradiance components in northern France
Gabriel Chesnoiu, Nicolas Ferlay, Isabelle Chiapello, Frédérique Auriol, Diane Catalfamo, Mathieu Compiègne, Thierry Elias, and Isabelle Jankowiak
Atmos. Chem. Phys., 24, 12375–12407, https://doi.org/10.5194/acp-24-12375-2024,https://doi.org/10.5194/acp-24-12375-2024, 2024
Short summary
Saharan dust impact on radiative heating rate errors inherent in reanalysis data in the African easterly wave development region
Ruby W. Burgess and Mayra I. Oyola-Merced
Atmos. Chem. Phys., 24, 12183–12201, https://doi.org/10.5194/acp-24-12183-2024,https://doi.org/10.5194/acp-24-12183-2024, 2024
Short summary
Combining observations and simulations to investigate the small-scale variability of surface solar irradiance under continental cumulus clouds
Zili He, Quentin Libois, Najda Villefranque, Hartwig Deneke, Jonas Witthuhn, and Fleur Couvreux
Atmos. Chem. Phys., 24, 11391–11408, https://doi.org/10.5194/acp-24-11391-2024,https://doi.org/10.5194/acp-24-11391-2024, 2024
Short summary
The impact of coupled 3D shortwave radiative transfer on surface radiation and cumulus clouds over land
Mirjam Tijhuis, Bart J. H. van Stratum, and Chiel C. van Heerwaarden
Atmos. Chem. Phys., 24, 10567–10582, https://doi.org/10.5194/acp-24-10567-2024,https://doi.org/10.5194/acp-24-10567-2024, 2024
Short summary

Cited articles

Adam, O., Grise, K. M., Staten, P., Simpson, I. R., Davis, S. M., Davis, N. A., Waugh, D. W., Birner, T., and Ming, A.: The TropD software package (v1): standardized methods for calculating tropical-width diagnostics, Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, 2018. a, b
Albern, N., Voigt, A., Buehler, S. A., and Grützun, V.: Robust and Nonrobust Impacts of Atmospheric Cloud-Radiative Interactions on the Tropical Circulation and Its Response to Surface Warming, Geophys. Res. Lett., 45, 8577–8585, https://doi.org/10.1029/2018GL079599, 2018. a
Albern, N., Voigt, A., and Pinto, J. G.: Cloud-radiative impact on the regional responses of the mid-latitude jet streams and storm tracks to global warming, J. Adv. Model. Earth Sy., 11, 1940–1958, https://doi.org/10.1029/2018MS001592, 2019. a, b
Albern, N., Voigt, A., and Pinto, J. G.: Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter, Environ. Res. Lett., 16, 084041, https://doi.org/10.1088/1748-9326/ac13f0, 2021. a
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., and Newsom, E. R.: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nat. Geosci., 9, 549–554, https://doi.org/10.1038/ngeo2731, 2016. a
Download
Short summary
Clouds shape weather and climate by interacting with photons, which changes temperatures within the atmosphere. We assess how well CMIP6 climate models capture this radiative heating by clouds within the atmosphere. While we find large differences among models, especially in cold regions of the atmosphere with abundant ice clouds, we also demonstrate that physical understanding allows us to predict the response of clouds and their radiative heating near the tropopause to climate change.
Altmetrics
Final-revised paper
Preprint