Articles | Volume 24, issue 16
https://doi.org/10.5194/acp-24-9573-2024
https://doi.org/10.5194/acp-24-9573-2024
Research article
 | 
29 Aug 2024
Research article |  | 29 Aug 2024

Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area

Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Kim, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler

Data sets

KORUS-AQ DC-8 1 min merged data KORUS-AQ Science Team https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01

Model code and software

F0AM Model setup for Nault et al., 2024 K. Travis https://doi.org/10.5281/zenodo.10723227

Download
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health.  Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found;  however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Altmetrics
Final-revised paper
Preprint