Articles | Volume 24, issue 16
https://doi.org/10.5194/acp-24-9197-2024
© Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Download
- Final revised paper (published on 23 Aug 2024)
- Supplement to the final revised paper
- Preprint (discussion started on 06 May 2024)
- Supplement to the preprint
Interactive discussion
Status: closed
Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor
| : Report abuse
- RC1: 'Comment on egusphere-2024-1065', Anonymous Referee #1, 16 May 2024
- RC2: 'Comment on egusphere-2024-1065', Anonymous Referee #2, 11 Jun 2024
- AC1: 'Comment on egusphere-2024-1065', Taiwo Ajayi, 18 Jun 2024
Peer review completion
AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
AR by Taiwo Ajayi on behalf of the Authors (19 Jun 2024)
Author's response
Author's tracked changes
Manuscript
ED: Publish as is (05 Jul 2024) by Sergio Rodríguez
AR by Taiwo Ajayi on behalf of the Authors (08 Jul 2024)
Ajayi et al report observations of trace gases, aerosol properties, and meteorological variables during 15 aircraft spirals near Bermuda in June of 2022. This study provides information on the vertical distribution of these observations at a location with a history of surface-based observations. This vertical information is unique for this area and will aid interpretation of surface and satellite-based observations. The paper mainly reports the observations, describing what they observed, without much detailed analysis or interpretation. However, this is a unique and relatively large data set that may be valuable for interpretation or reinterpretation of past and future studies in the Bermuda area, as well as for understanding satellite observations of trace gases and aerosol over the oceans. The vertical information was provided by 2 separate aircraft, one flying at higher altitudes and the other flying in spirals between 0.15 to 8 km altitude. The aircraft had multiple instruments to measure meteorological parameters, aerosol properties, and trace gas concentrations. The higher-flying aircraft deployed dropsondes to measure vertical profiles of temperature, relative humidity, and wind speed.
They categorize the different vertical soundings into three source regions using the HYSPLIT model. The three regions, North America, Ocean, and North Africa/Caribbean, identified by HYSLPIT are confirmed with the observed trace gases and aerosol chemical composition. They found considerable vertical variability in all three categories, with generally higher trace gas concentrations with increasing altitude (especially for ozone). Sub-micron particle concentrations also increased with altitude suggesting new particle formation in the free troposphere. Super-micron concentrations were highest near the surface and negligible above the boundary layer. Organics tended to dominate aerosol mass in the FT while sulfate and chloride was more important closer to the surface.
This paper is suitable for publication in ACP. This data could have comprised several papers that include a more detailed analysis of the observations. The data is high quality and will be useful for such future studies and thus warrants publication. A few minor comments to improve clarity are below.
Line 224: Is it 2-3 days or 2-3 hours? I think days but I’m not sure why “hours” is there.
The short paragraph beginning on line 272 states differences in CO2 concentrations between the MBL and FT but zero analysis is given. Are these differences significant? Are they expected? Why are they different?
Section 3.6: Remind the reader the aerosol size distribution that the AMS samples at the beginning of this section. Mean numbers are given in this section. It would be good to also state the variability in some way, such as the standard deviation of the mean.
Table 6 caption: “total mass threshold > 0.4…” Threshold for what? Is this the detection limit?
Paragraph beginning on line 509: Please provide information on the variability about the mean for the Cl/Na ratio.