Articles | Volume 24, issue 16
https://doi.org/10.5194/acp-24-9119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-9119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar cycle signatures in lightning activity
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, 14100, Czech Republic
Ronald Langer
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, 04001, Slovakia
Ivana Kolmašová
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, 14100, Czech Republic
Faculty of Mathematics and Physics, Charles University, Prague, 18000, Czech Republic
Ondřej Lhotka
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, 14100, Czech Republic
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, 14100, Czech Republic
Igor Strhárský
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, 04001, Slovakia
Related authors
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-167, https://doi.org/10.5194/amt-2023-167, 2023
Revised manuscript under review for AMT
Short summary
Short summary
Waves are very important as main drivers of different patterns (streamers) in stratosphere. We analyze some changes of these waves or infrasound characteristics related to streamers using continuous Doppler soundings, array of microbarometers in the Czechia. Ground measurements using the WBCI array showed that GW propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489, https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary
Short summary
We contribute to the knowledge about the differences in lightning flashes of opposite polarity. We found and explained a distinct behaviour of in-cloud processes happening immediately after return strokes of cloud-to-ground lightning flashes, considering a recharging of in-cloud part of bidirectional leader.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-167, https://doi.org/10.5194/amt-2023-167, 2023
Revised manuscript under review for AMT
Short summary
Short summary
Waves are very important as main drivers of different patterns (streamers) in stratosphere. We analyze some changes of these waves or infrasound characteristics related to streamers using continuous Doppler soundings, array of microbarometers in the Czechia. Ground measurements using the WBCI array showed that GW propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time
Ivana Kolmašová, Ondřej Santolík, Jakub Šlegl, Jana Popová, Zbyněk Sokol, Petr Zacharov, Ondřej Ploc, Gerhard Diendorfer, Ronald Langer, Radek Lán, and Igor Strhárský
Atmos. Chem. Phys., 22, 7959–7973, https://doi.org/10.5194/acp-22-7959-2022, https://doi.org/10.5194/acp-22-7959-2022, 2022
Short summary
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Related subject area
Subject: Climate and Earth System | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Abrupt excursions in water vapor isotopic variability at the Pointe Benedicte observatory on Amsterdam Island
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Cited articles
Andersson, M. E., Verronen, P. T., Rodger, C. J., Clilverd, M. A., and Seppälä, A.: Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5, 5197, https://doi.org/10.1038/ncomms6197, 2014.
Aniol, R.: Schwankungen der Gewitterhäufigkeit in Süddeutschland, Meteorol. Rundsch., 3, 55–56, 1952.
Arnold, N. F. and Robinson, T. R.: Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation, Ann. Geophys., 16, 69–76, 1998.
Arnold, N. F. and Robinson, T. R.: Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation, Ann. Geophys., 16, 69–76, https://doi.org/10.1007/s00585-997-0069-3, 1998.
Balachandran, N. K., Rind, D., Lonergan, P., and Shindell, D. T.: Effects of solar cycle variability on the lower stratosphere and the troposphere, J. Geophys. Res., 104, 27321–27339, 1999.
Balaz, M. and Strharský, I.: Space physics database centre [data set], http://data.space.saske.sk/status/ (last access: 29 August 2023), 2017.
Barriopedro, D., García-Herrera, R., and Huth, R.: Solar modulation of Northern Hemisphere winter blocking, J. Geophys. Res., 113, D14118, https://doi.org/10.1029/2008JD009789, 2008.
Borries, C., Ferreira, A. A., Nykiel, G., and Borges, R. A.: A new index for statistical analyses and prediction of traveling ionospheric disturbances, J. Atmos. Sol.-Terr. Phys., 247, 106069, https://doi.org/10.1016/j.jastp.2023.106069, 2023.
Bozóki, T., Sátori, G., Williams, E,, Mironova, I., Steinbach, P., Bland, E. C., Koloskov, A., Yampolski, Y. M., Budanov, O. V., Neska, M., Sinha, A. K., Rawat, R., Sato, M., Beggan, C. D., Toledo-Redondo, S., Liu, Y., and Boldi, R.: Solar Cycle-Modulated Deformation of the Earth–Ionosphere Cavity, Front. Earth Sci., 9, 689127, https://doi.org/10.3389/feart.2021.689127, 2021.
Brooks, C. E. P.: The variation of the annual frequency of thunderstorms in relation to sunspots, Q. J. Roy. Meteor. Soc., 60, 153–165, 1934.
Burns, G. B., Tinsley, B. A., French, W. J. R., Troshichev, O. A., and Frank-Kamenetsky, A. V.: Atmospheric Circuit Influences on Ground-Level Pressure in the Antarctic and Arctic, J. Geophys. Res.-Atmos., 113, D15112, https://doi.org/10.1029/2007JD009618, 2008.
Chronis, T. G.: Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States, J. Climate, 22, 5748–5754, https://doi.org/10.1175/2009JCLI2912.1, 2009.
Chum, J., Langer, R., Baše, J., Kollárik, M., Strhárský, I., Diendorfer, G., and Rusz, J.: Significant enhancements of secondary cosmic rays and electric field at the high mountain peak of Lomnický Štít in High Tatras during thunderstorms, Earth, Planet. Space, 72, 28, https://doi.org/10.1186/s40623-020-01155-9, 2020.
Chum, J., Kollárik, M., Kolmašová, I., Langer, R,, Rusz, J., Saxonbergová, D., and Strhárský, I.: Influence of Solar Wind on Secondary Cosmic Rays and Atmospheric Electricity, Front. Earth Sci., 9, 671801, https://doi.org/10.3389/feart.2021.671801, 2021.
Dwyer, J. R. and Uman, M. A.: The Physics of Lightning, Phys. Rep., 534, 147–241, https://doi.org/10.1016/j.physrep.2013.09.004, 2014.
Fritz, H.: Die wichtigsten periodischen Erscheinungen der Meteorologie und Kosmologie, Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, Deel III, Haarlem, https://openlibrary.org/books/OL23433852M/Die_wichtigsten_perodischen_Erscheinungen_der_Meteorologie_und_Kosmologie (last access: 31 January 2024), 1889.
Gray, L. J., Beer, J., Geller, M., Haigh, D. J., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar Influences on Climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gray, L. J., Woollings, T. J., Andrews, M., and Knight, J.: Eleven-year solar cycle signal in the NAO and Atlantic/European blocking, Q. J. Roy. Meteor. Soc., 142, 1890–1903, https://doi.org/10.1002/qj.2782, 2016.
Hale, L.: Solar modulation of atmospheric electrification and the Sun–weather relationship, Nature, 278, 373, https://doi.org/10.1038/278373a0, 1979.
Holzworth, R. H., Brundell, J. B., McCarthy, M. P., Jacobson, A. R., Rodger, C. J., and Anderson, T. S.: Lightning in the Arctic, Geophys Res. Lett., 48, e2020GL091366, https://doi.org/10.1029/2020GL091366, 2021.
Hutchins, M. L., Holzworth, R. H., Brundell, J. B., and Rodger C. J.: Relative detection efficiency of the World Wide Lightning Location Network, Radio Sci., 47, RS6005, https://doi.org/10.1029/2012RS005049, 2012.
Kan, J. R. and Lee, L. C.: Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577–580, https://doi.org/10.1029/GL006i007p00577, 1979.
Kirkby, J.: Cosmic Rays and Climate, Surv. Geophys., 28, 333–375, https://doi.org/10.1007/s10712-008-9030-6, 2008.
Kleymenova, E. P.: On the variation of the thunderstorm activity in the solar cycle, Glav. Upirav. Gidromet. Scuzb., Met. Gidr., 8, 64–68, 1967 (in Russian).
Kolmašová, I., Santolík, O., and Rosická, K.: Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena, Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, 2022.
Kozlov, A. V., Slyunyaev, N. N., Ilin, N. V., Sarafanov, F. G., and Frank-Kamenetsky, A. V.: The effect of the Madden–Julian Oscillation on the global electric circuit, Atmos. Res., 284, 106585, https://doi.org/10.1016/j.atmosres.2022.106585, 2023.
Kristjánsson, J. E., Stjern, C. W., Stordal, F., Fjæraa, A. M., Myhre, G., and Jónasson, K.: Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data, Atmos. Chem. Phys., 8, 7373–7387, https://doi.org/10.5194/acp-8-7373-2008, 2008.
Kudela, K. and Langer, R.: Cosmic ray measurements in high Tatra mountains: 1957–2007, Adv. Space Res., 44, 1166–1172, https://doi.org/10.1016/j.asr.2008.11.028, 2009.
Lam, M. M. and Tinsley, B. A.: Solar Wind-Atmospheric Electricity-Cloud Microphysics Connections to Weather and Climate, J. Atmos. Sol.-Terr. Phys. 149, 277–290, https://doi.org/10.1016/j.jastp.2015.10.019, 2016.
Maliniemi, V., Asikainen, T., Mursula, K., and Seppälä, A.: QBO dependent relation between electron precipitation and wintertime surface temperature, J. Geophys. Res.-Atmos., 118, 6302–6310, 2013.
Maliniemi, V., Asikainen, T., and Mursula, K.: Effect of geomagnetic activity on the northern annular mode: QBO dependence and the Holton-Tan relationship, J. Geophys. Res.-Atmos., 121, 10043–10055, https://doi.org/10.1002/2015JD024460, 2016.
Mannucci, A. J., Crowley, G., Tsurutani, B. T., Verkhoglyadova, O. P., Komjathy, A., and Stephens, P.: Interplanetary magnetic field By control of prompt total electron content increases during superstorms, J. Atmos. Sol.-Terr. Phys., 115–116, 7–16, https://doi.org/10.1016/j.jastp.2014.01.001, 2014.
Markson, R.: Solar modulation of atmospheric electrification and possible implications for the Sun–weather relationship, Nature, 273, 103–109, https://doi.org/10.1038/273103a0, 1978.
Markson, R.: Modulation of the Earth's electric field by cosmic radiation, Nature, 291, 304–308, https://doi.org/10.1038/291304a0, 1981.
Markson, M. and Muir, M.: Solar wind control of the Earth's electric field, Science, 208, 979–990, https://doi.org/10.1126/science.208.4447.979, 1980.
Masato, G., Hoskins, B. J., and Woollings, T. J.: Wave-breaking characteristics of midlatitude blocking, Q. J. Roy. Meteor. Soc., 138, 1285–1296, https://doi.org/10.1002/qj.990, 2012.
Mironova, I. A., Aplin, K. L., Arnold, F., Bazilevskaya, G. A., Harrison, R. G., Krivolutsky, A. A., Nicoll, K. A., Rozanov, E. V., Turunen, E., and Usoskin, I. G.: Energetic Particle Influence on the Earth's Atmosphere, Space Sci. Rev., 194, 1–96, https://doi.org/10.1007/s11214-015-0185-4, 2015.
Miyahara, H., Kataoka, R., Mikami, T., Zaiki, M., Hirano, J., Yoshimura, M., Aono, Y., and Iwahashi, K.: Solar rotational cycle in lightning activity in Japan during the 18–19th centuries, Ann. Geophys., 36, 633–640, https://doi.org/10.5194/angeo-36-633-2018, 2018.
Mutai, C. and Ward, M.: East African Rain fall and the Tropical Circulation/Convection on Intraseasonal to Interannual Timescales, J. Climate, 13, 3915–3939, 2000.
NASA: OMNIWeb Plus, Goddard Space Flight Center, NASA [data set], https://omniweb.gsfc.nasa.gov/ (last access: 3 February 2023), 2024.
Nicholson, S. and Kim, J.: The relationship of the El Nino–Southern Oscillation to African rainfall, Int. J. Climatol., 17, 117–135, 1997.
Ogallo, L. J.: Relationship between seasonal rainfall in East Africa and Southern Oscillation, J. Climatol., 8, 34–43, 1988.
Owens, M., Scott, C., Lockwood, M., Barnard, L., Harrison, R., Nicoll, K., Watt, C., and Bennett, A.: Modulation of UK lightning by heliospheric magnetic field polarity, Environ. Res. Lett., 9, 115009, https://doi.org/10.1088/1748-9326/9/11/115009, 2014.
Owens, M. J., Scott, C. J., Bennett, A. J., Thomas, S. R., Lockwood, M., Harrison, R. G., and Lam, M. M.: Lightning as a space-weather hazard: UK thunderstorm activity modulated by the passage of the heliospheric current sheet, Geophys. Res. Lett., 42, 9624–9632, https://doi.org/10.1002/2015GL066802, 2015.
Pinto, O., Pinto, I. R. C. A., and Ferro, M. A. S.: A study of the long-term variability of thunderstorm days in southeast Brazil. J. Geophys. Res.-Atmos., 118, 5231–5246, https://doi.org/10.1002/jgrd.50282., 2013.
Pinto Neto, O., Pinto, I. R. C. A., and Pinto, O.: The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009, J. Atmos. Sol.-Terr. Phys., 98, 12–21, https://doi.org/10.1016/j.jastp.2013.03.010, 2013.
Prikryl, P., Bruntz, R., Tsukijihara, T., Iwao, K., Muldrew, D. B., Rušin, V., Rybanský, M., Turňa, M., and Šťastný, P.: Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control, J. Atmos. Sol.-Terr. Phys., 171, 94–110, https://doi.org/10.1016/j.jastp.2017.07.023, 2018.
Rodger, C. J., Brundell, J. B., Dowden, R. L., and Thomson, N. R.: Location accuracy of long distance VLF lightning locationnetwork, Ann. Geophys., 22, 747–758, https://doi.org/10.5194/angeo-22-747-2004, 2004.
Rycroft, M. J., Israelsson, S., and Price, C.: The global atmospheric electric circuit, Solar activity and climate change, J. Atmos. Sol.-Terr. Phys., 62, 1563–1576, https://doi.org/10.1016/S1364-6826(00)00112-7, 2000.
Salminen, A., Asikainen, T., Maliniemi, V., and Mursula, K.: Effect of energetic electron precipitation on the northern polar vortex: Explaining the QBO modulation via control of meridional circulation, J. Geophys. Res.-Atmos., 124, 5807–5821, 2019.
Sátori, G., Williams, E., and Mushtak, V.: Response of the Earth-Ionosphere Cavity Resonator to the 11-year Solar Cycle in X-Radiation, J. Atmos. Sol.-Terr. Phys., 67, 553–562, https://doi.org/10.1016/j.jastp.2004.12.006, 2005.
Sauvaud, J. A., Maggiolo, R., Jacquey, C., Parrot, M., Berthelier, J. J., Gamble, R. J., and Rodger, C. J.: Radiation belt electron precipitation due to VLF transmitters: Satellite observations, Geophys. Res. Lett., 35, L09101, https://doi.org/10.1029/2008GL033194, 2008.
Schlegel, K., Diendorfer, G., Thern, S., and Schmidt, M.: Thunderstorms, lightning and solar activity – Middle Europe, J. Atmos. Sol.-Terr. Phys., 63, 1705–1713, https://doi.org/10.1016/S1364-6826(01)00053-0, 2001.
Scott, C. J., Harrison, R. G., Owens, M. J., Lockwood, M., and Barnard, L.: Evidence for solar wind modulation of lightning, Environ. Res. Lett., 9, 055004, https://doi.org/10.1088/1748-9326/9/5/055004, 2014.
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and Rodger, C. J.: Geomagnetic activity and polar surface air temperature variability, J. Geophys. Res.-Space, 114, A10312, https://doi.org/10.1029/2008JA014029, 2009.
Seppälä, A., Lu, H., Clilverd, M. A., and Rodger, C. J.: Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response, J. Geophys. Res.-Atmos., 118, 2169–2183, 2013.
Shao, X. M., Ho, C., Bowers, G., Blaine, W., and Dingus, B.: Lightning Interferometry Uncertainty, Beam Steering Interferometry, and Evidence of Lightning Being Ignited by a Cosmic ray Shower, J. Geophys. Res.-Atmos., 125, e2019JD032273, https://doi.org/10.1029/2019JD032273, 2020.
Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., and Wissing, J. M.: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, 2018.
Stringfellow, M. F.: Lightning incidence in Britain and the solar cycle, Nature, 249, 332–333, https://doi.org/10.1038/249332a0, 1974.
Svensmark, H., Bondo, T., and Svensmark, J.: Cosmic ray Decreases Affect Atmospheric Aerosols and Clouds, Geophys. Res. Lett., 36, L15101, https://doi.org/10.1029/2009GL038429, 2009.
Usoskin, I. G., Kananen, H., Mursula, K., Tanskanen, P., and Kovaltsov, G. A.: Correlative study of solar activity and cosmic ray intensity, J. Geophys. Res., 103, 9567, https://doi.org/10.1029/97JA03782, 1998.
Virts, K. S., Wallace, J. M., Hutchins, M. L., and Holzworth, R. H.: A new ground-based, hourly global lightning climatology, B. Am. Meteorol. Soc., 94, 1831–1891, 2013.
Voiculescu, M. and Usoskin, I.: Persistent Solar Signatures in Cloud Cover: Spatial and Temporal Analysis, Environ. Res. Lett., 7, 044004, https://doi.org/10.1088/17489326/7/4/044004, 2012.
Voiculescu, M., Usoskin, I., and Condurache-Bota, S.: Clouds Blown by the Solar Wind, Environ. Res. Lett., 8, 045032, https://doi.org/10.1088/1748-9326/8/4/045032, 2013.
Williams, E., Bozóki, T., Sátori, G., Price, C., Steinbach, P., Guha, A., Liu, Y., Beggan, C. D., Neska, M., Boldi, R., and Atkinson, M.: Evolution of global lightning in the transition from cold to warm phase preceding two super El Niño events, J. Geophys. Res.-Atmos., 126, e2020JD033526, https://doi.org/10.1029/2020JD033526, 2021.
Short summary
Lightning and extreme weather can endanger people and technology. Despite advances in science, not all the factors that lead to the formation of thunderclouds, to their charging and to lightning ignition are known in detail. This paper shows that lightning frequency may, to some extent, be modulated by solar activity and solar wind. Namely, in the region of the South Atlantic Anomaly of the Earth's magnetic field, it correlates with the polarity and intensity of the solar wind.
Lightning and extreme weather can endanger people and technology. Despite advances in science,...
Altmetrics
Final-revised paper
Preprint