Articles | Volume 24, issue 14
https://doi.org/10.5194/acp-24-8519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-8519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First observations of the transient luminous event effect on ionospheric Schumann resonance, based on the China Seismo-Electromagnetic Satellite
Department of Geophysics, College of Geology Engineering and Geomatics, Chang'an University, Xi'an, 710054, China
Zhe Wang
Department of Geophysics, College of Geology Engineering and Geomatics, Chang'an University, Xi'an, 710054, China
Gaopeng Lu
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230026, China
Zeren Zhima
China National Institute of Natural Hazards, Ministry of Emergency Management of the PRC, Beijing, 100085, China
Willie Soon
Center for Environmental Research and Earth Sciences (CERES), Salem, MA 01970, USA
Institute of Earth Physics and Space Science (ELKH EPSS), Sopron, 9400, Hungary
Victor Manuel Velasco Herrera
Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
Peng Ju
Department of Geophysics, College of Geology Engineering and Geomatics, Chang'an University, Xi'an, 710054, China
Related authors
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Xiaochen Gou, Lei Li, Yiteng Zhang, Bin Zhou, Yongyong Feng, Bingjun Cheng, Tero Raita, Ji Liu, Zeren Zhima, and Xuhui Shen
Ann. Geophys., 38, 775–787, https://doi.org/10.5194/angeo-38-775-2020, https://doi.org/10.5194/angeo-38-775-2020, 2020
Short summary
Short summary
The CSES observed ionospheric Pc1 waves near the wave injection regions in conjugate hemispheres during the recovery phase of the geomagnetic storm on 27 August 2018. The Pc1s were found to be Alfvén waves with mixed polarisation propagating along background magnetic lines in the ionosphere. We suggest that the possible sources of Pc1 are EMIC waves generated near the plasmapause by the outward expansion of the plasmasphere into the ring current during the recovery phase of geomagnetic storms.
Cited articles
Balser, M. and Wagner, C. A.: On frequency variations of the Earth-ionosphere cavity modes, J. Geophys. Res., 67, 4081–4083, https://doi.org/10.1029/JZ067i010p04081, 1962.
Bayupati, I. P. A., Kasahara, Y., and Goto, Y.: Study of dispersion of lightning whistlers observed by Akebono satellite in the earth's plasmasphere, IEICE T. Commun., 95, 3472–3479, 2012.
Beggan, C. D. and Musur, M.: Observation of ionospheric Alfvén resonances at 1–30 Hz and their superposition with the Schumann resonances, J. Geophys. Res.-Space, 123, 4202–4214, https://doi.org/10.1029/2018JA025264, 2018.
Bernard, L. C.: A new nose extension method for whistlers, J. Atmos. Terr. Phys., 35, 871–880, https://doi.org/10.1016/0021-9169(73)90069-X, 1973.
Boccippio, D. J., Williams, E. R., Heckman, S. J., Lyons, W. A., Baker, I. T., and Boldi, R.: Sprites, ELF transients, and positive ground strokes, Science, 269, 1088–1091, https://doi.org/10.1126/science.269.5227.1088, 1995.
Bösinger, T., Haldoupis, C., Belyaev, P. P., Yakunin, M. N., Semenova, N. V., Demekhov, A. G., and Angelopoulos, V.: Spectral properties of the ionospheric Alfvén resonator observed at a low-latitude station (L=1.3), J. Geophys. Res.-Space, 107, SIA 4-1–SIA 4-9, https://doi.org/10.1029/2001JA005076, 2002.
Bösinger, T., Mika, A., Shalimov, S. L., Haldoupis, C., and Neubert, T.: Is there a unique signature in the ULF response to sprite-associated lightning flashes?, J. Geophys. Res.-Space, 111, A10310, https://doi.org/10.1029/2006JA011887, 2006.
Bracewell, R. and Kahn, P. B.: The Fourier Transform and Its Applications, Am. J. Phys., 34, 712–712, https://doi.org/10.1119/1.1973431, 1966.
Bracewell, R. N.: The fourier transform, Sci. Am., 260, 86–95, https://doi.org/10.1038/scientificamerican0689-86, 1989.
Carpenter, D. L. and Anderson, R. R.: An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res.-Space, 97, 1097–1108, 1992, https://doi.org/10.1029/91JA01548, 1992.
CSES: Center for Space Information Research, China Seismo-Electromagnetic Satellite (CSES), https://leos.ac.cn (last access: 28 October 2023), 2019.
Dharma, K. S., Bayupati, I. P. A., and Buana, P. W.: Automatic lightning whistler detection using connectd component method, Journal of Theoretical and Applied Information Technology, 66, 638–645, 2014.
Diego, P., Huang, J., Piersanti, M., Badoni, D., Zeren, Z., Yan, R., Rebustini, G., Ammendola, R., Candidi, M., Guan, Y. B., Lei, J., Masciantonio, G., Bertello, I., De Santis, C., Ubertini, P., Shen, X., and Picozza, P.: The electric field detector on board the China seismo electromagnetic satellite – In-orbit results and validation, Instruments, 5, 1, https://doi.org/10.3390/instruments5010001, 2020.
Dudkin, D., Pilipenko, V., Korepanov, V., Klimov, S., and Holzworth, R.: Electric field signatures of the IAR and Schumann resonance in the upper ionosphere detected by Chibis-M microsatellite, J. Atmos. Sol.-Terr. Phy., 117, 81–87, https://doi.org/10.1016/j.jastp.2014.05.013, 2014.
Franz, R. C., Nemzek, R. J., and Winckler, J. R.: Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 48–51, https://doi.org/10.1126/science.249.4964.48, 1990.
Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U. S., and Lyons, W. A.: Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157–2160, https://doi.org/10.1029/96GL01979, 1996.
Füllekrug, M. and Fraser-Smith, A. C.: Further evidence for a global correlation of the Earth-ionosphere cavity resonances, Geophys. Res. Lett., 23, 2773–2776, https://doi.org/10.1029/96GL02612, 1996.
Füllekrug, M. and Fraser-Smith, A. C.: The Earth's electromagnetic environment, Geophys. Res. Lett., 38, L21807, https://doi.org/10.1029/2011GL049572, 2011.
Füllekrug, M., Fraser-Smith, A. C., and Reising, S. C.: Ultra-slow tails of sprite-associated lightning flashes, Geophys. Res. Lett., 25, 3497–3500, https://doi.org/10.1029/98GL02590, 1998.
Galejs, J.: Frequency variations of Schumann resonances, J. Geophys. Res., 75, 3237–3251, https://doi.org/10.1029/JA075i016p03237, 1970.
Guha, A., Williams, E., Boldi, R., Sátori, G., Nagy, T., Bór, J., Montanya, J., and Ortega P.: Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts, J. Atmos. Sol.-Terr. Phy., 165, 25–37, https://doi.org/10.1016/j.jastp.2017.11.003, 2017.
Helliwell, R. A.: Whistlers and related ionospheric phenomena, Stanford University Press, Stanford, America, 349 pp., ISBN 0-486-44572-0, 1965.
Helliwell, R. A. and Pytte, A.: Whistlers and related ionospheric phenomena, Am. J. Phys., 34, 81–81, https://doi.org/10.1119/1.1972800, 1966.
Holzworth, R. H., Winglee, R. M., Barnum, B. H., Li, Y., and Kelley, M. C.: Lightning whistler waves in the high-latitude magnetosphere, J. Geophys. Res.-Space, 104, 17369–17378, https://doi.org/10.1029/1999JA900160, 1999.
Jacobson, A. R., Holzworth, R., Harlin, J., Dowden, R., and Lay, E.: Performance assessment of the world wide lightning location network (WWLLN), using the Los Alamos sferic array (LASA) as ground truth, J. Atmos. Ocean. Tech., 23, 1082–1092, https://doi.org/10.1175/jtech1902.1, 2006.
Lichtenberger, J., Ferencz, C., Bodnár, L., Hamar, D., and Steinbach, P.: Automatic whistler detector and analyzer system: Automatic whistler detector, J. Geophys. Res.-Space, 113, A12201, https://doi.org/10.1029/2008JA013467, 2008.
Mende, S. B., Rairden, R. L., Swenson, G. R., and Lyons, W. A.: Sprite spectra; N2 1 PG band identification, Geophys. Res. Lett., 22, 2633–2636, https://doi.org/10.1029/95GL02827, 1995.
Molchanov, O., Rozhnoi, A., Solovieva, M., Akentieva, O., Berthelier, J. J., Parrot, M., Lefeuvre, F., Biagi, P. F., Castellana, L., and Hayakawa, M.: Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite, Nat. Hazards Earth Syst. Sci., 6, 745–753, https://doi.org/10.5194/nhess-6-745-2006, 2006.
Ouyang, X. Y., Xiao, Z., Hao, Y. Q., and Zhang, D. H.: Variability of Schumann resonance parameters observed at low latitude stations in China, Adv. Space Res., 56, 1389–1399, https://doi.org/10.1016/j.asr.2015.07.006, 2015.
Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S., and Wood, T. G.: Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, https://doi.org/10.1038/416152a, 2002.
Rycroft, M. J., Israelsson, S., and Price, C.: The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phy., 62, 1563–1576, https://doi.org/10.1016/S1364-6826(00)00112-7, 2000.
Sátori, G., Rycroft, M., Bencze, P., Märcz, F., Bór, J., Barta, V., Nagy, T., and Kovács, K.: An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary, Surv. Geophys., 34, 255–292, https://doi.org/10.1007/s10712-013-9222-6, 2013.
Schumann, W. O.: On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell, Z. Naturforsch., 7A, 149–154, 1952 (in German).
Shalimov, S. L. and Bösinger, T.: Sprite-Producing Lightning-Ionosphere Coupling and Associated Low-Frequency Phenomena, Space Sci. Rev., 168, 517–531, https://doi.org/10.1007/s11214-011-9812-x, 2011.
Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., and Heavner M. J.: Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205–1208, https://doi.org/10.1029/95GL00583, 1995.
Simões, F., Pfaff, R., and Freudenreich, H.: Satellite observations of Schumann resonances in the Earth's ionosphere, Geophys. Res. Lett., 38, L22101, https://doi.org/10.1029/2011GL049668, 2011.
Stenbaek-Nielsen, H. C., Moudry, D. R., Wescott, E. M., Sentman, D. D., and Sâo Sabbas, F. T.: Sprites and possible mesospheric effects, Geophys. Res. Lett., 27, 3829–3832, https://doi.org/10.1029/2000GL003827, 2000.
Storey, L. R. O.: An investigation of whistling atmospherics, Philos. T. R. Soc. S.-A, 246, 113–141, https://doi.org/10.1098/rsta.1953.0011, 1953.
Surkov, V. V., Nosikova, N. S., Plyasov, A. A., Pilipenko, V. A., and Ignatov, V. N.: Penetration of Schumann resonances into the upper ionosphere, J. Atmos. Sol.-Terr. Phy., 97, 65–74, https://doi.org/10.1016/j.jastp.2013.02.015, 2013.
University of Science and Technology of China: Transient luminous events over high-impact thunderstorm systems 1.0, National Space Science Data Center [data set], 8 October 2021, https://doi.org/10.12176/01.05.00070-V01, 2021a.
University of Science and Technology of China: Coordinated Observations of Transient Luminous Events 1.0, National Space Science Data Center [data set], 27 September 2021, https://doi.org/10.12176/01.05.00069-V01, 2021b.
Wescott, E. M., Sentman, D. D., Osborne, D., Hampton, D., and Heavner, M.: Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209–1212, https://doi.org/10.1029/95GL00582, 1995.
Wescott, E. M., Sentman, D. D., Heavner, M. J., Hampton, D. L., Osborne, D. L., and Vaughan Jr., O. H.: Blue starters: Brief upward discharges from an intense Arkansas thunderstorm, Geophys. Res. Lett., 23, 2153–2156, https://doi.org/10.1029/96GL01969, 1996.
Willett, J. C., Bailey, J. C., Leteinturier, C., and Krider, E. P.: Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz, J. Geophys. Res.-Atmos., 95, 20367–20387, https://doi.org/10.1029/JD095iD12p20367, 1990.
WWLLN: World Wide Lightning Location Network, WWLLN [data set], http://wwlln.net/ (last access: 28 October 2023), 2024.
Zhou, H., Yu, H., Cao B., and Qiao, X.: Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories, J. Atmos. Sol.-Terr. Phy., 98, 86–96, https://doi.org/10.1016/j.jastp.2013.03.021, 2013.
Short summary
We focus on the interactions among TLEs, lightning, and the ionospheric electric field. The SNR of the Schumann resonance at the first and second modes dropped during the TLEs. A significant enhancement of the energy in ULF occurred. Distinct lightning whistler waves were found in the VLF band. Our results indicate that the observations of electric fields from the satellite could possibly be utilized to monitor lower-atmospheric lightning and its impact on the space environment.
We focus on the interactions among TLEs, lightning, and the ionospheric electric field. The SNR...
Altmetrics
Final-revised paper
Preprint