Articles | Volume 24, issue 9
https://doi.org/10.5194/acp-24-5405-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-5405-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Cristiano M. Wrasse
CORRESPONDING AUTHOR
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
Prosper K. Nyassor
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
Ligia A. da Silva
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
State Key Laboratory of Space Weather, Chinese Academy of Sciences, National Space Science Center, Beijin, China
Cosme A. O. B. Figueiredo
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
José V. Bageston
National Institute for Space Research, Southern Space Coordination, Santa Maria, RS, Brazil
Kleber P. Naccarato
National Institute for Space Research, Impacts, Adaptation and Vulnerabilities Division, São José dos Campos, SP, Brazil
Diego Barros
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
Hisao Takahashi
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
Delano Gobbi
National Institute for Space Research, Space Weather Division, São José dos Campos, SP, Brazil
Related authors
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, and Gabriel A. Giongo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1982, https://doi.org/10.5194/egusphere-2024-1982, 2024
Short summary
Short summary
This work studies the dynamics of momentum and energy of upward and downward GW. From photometer, the vertical component of GWs were observed and horizontal component from an all-sky imager. Using these parameters from these two instruments and wind from meteor radar, the momentum flux and energy of the waves were determined and studied. It was observed that the dynamics of the downward GWs is opposite to that of the upward GWs.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Oluwakemi Dare-Idowu, Igo Paulino, Cosme A. O. B. Figueiredo, Amauri F. Medeiros, Ricardo A. Buriti, Ana Roberta Paulino, and Cristiano M. Wrasse
Ann. Geophys., 38, 507–516, https://doi.org/10.5194/angeo-38-507-2020, https://doi.org/10.5194/angeo-38-507-2020, 2020
Short summary
Short summary
Some strong gravity wave activity occurred and was observed on 8 April 2005. This work reports the spectral characteristics of these waves using OH airglow images captured by the all-sky imager installed at São João do Cariri (7.4° S, 36.5° W). A preferential propagation direction was observed due to the positioning of the source and also due to the wind filtering effect. Furthermore, the source of these waves was identified by performing reverse-ray tracing analysis.
Igo Paulino, Ana Roberta Paulino, Ricardo Y. C. Cueva, Ebenezer Agyei-Yeboah, Ricardo Arlen Buriti, Hisao Takahashi, Cristiano Max Wrasse, Ângela M. Santos, Amauri Fragoso de Medeiros, and Inez S. Batista
Ann. Geophys., 38, 437–443, https://doi.org/10.5194/angeo-38-437-2020, https://doi.org/10.5194/angeo-38-437-2020, 2020
Short summary
Short summary
In this paper, an extensive study has been done in order to investigate periodic oscillations in the start times of equatorial plasma bubbles observed over Brazil. Using OI6300 airglow images and ionograms, it was possible to detect semimonthly oscillations in the start times of equatorial plasma bubbles (EPBs) and equatorial Spread-F. This semimonthly oscillation is likely related to the lunar tide, which represents an important mechanism acting in the day-to-day variability of EPBs.
Jean C. Santos and Cristiano M. Wrasse
Ann. Geophys., 37, 603–612, https://doi.org/10.5194/angeo-37-603-2019, https://doi.org/10.5194/angeo-37-603-2019, 2019
Short summary
Short summary
We describe a technique used to locate and classify critical points in 2-D flow fields at the solar photosphere obtained from the evolution of the line-of-sight magnetic field in a region close to the magnetic polarity inversion line of a fully emerged active region. We apply this technique to locate a particular kind of critical point associated to vortex flows, which are considered important, since they can twist and interweave the foot points of flux tubes and generate magnetic reconnection.
Patrick Essien, Igo Paulino, Cristiano Max Wrasse, Jose Andre V. Campos, Ana Roberta Paulino, Amauri F. Medeiros, Ricardo Arlen Buriti, Hisao Takahashi, Ebenezer Agyei-Yeboah, and Aline N. Lins
Ann. Geophys., 36, 899–914, https://doi.org/10.5194/angeo-36-899-2018, https://doi.org/10.5194/angeo-36-899-2018, 2018
Short summary
Short summary
Present work reports seasonal characteristics of small- and medium-scale gravity waves in the mesosphere and lower thermosphere region. All-sky images of the hydroxyl airglow emission layer over São João do Cariri (7.4° S, 36.5° W) were observed from September 2000 to December 2010, during a total of 1496 nights and obtained 2343 SSGW and 537 MSGW events. The horizontal propagation directions of SSGWs and MSGWs showed clear seasonal variations based on the influence of the wind filtering process.
Amauri Fragoso Medeiros, Igo Paulino, Cristiano Max Wrasse, Joaquim Fechine, Hisao Takahashi, José Valentin Bageston, Ana Roberta Paulino, and Ricardo Arlen Buriti
Ann. Geophys., 36, 311–319, https://doi.org/10.5194/angeo-36-311-2018, https://doi.org/10.5194/angeo-36-311-2018, 2018
Short summary
Short summary
On 3 October 2005, a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W) propagating to the northeast in the OH airglow images. One and a half hours later, it disappeared completely and ripples were observed in the eastern part of the images. After studying the background atmosphere, the main conclusion of this work was that the instability in the airglow layer did not allow the propagation of the front to the other side of the local zenith.
Igo Paulino, Joyrles F. Moraes, Gleuson L. Maranhão, Cristiano M. Wrasse, Ricardo Arlen Buriti, Amauri F. Medeiros, Ana Roberta Paulino, Hisao Takahashi, Jonathan J. Makela, John W. Meriwether, and José André V. Campos
Ann. Geophys., 36, 265–273, https://doi.org/10.5194/angeo-36-265-2018, https://doi.org/10.5194/angeo-36-265-2018, 2018
Short summary
Short summary
This article presents characteristics of periodic waves observed in the thermosphere from airglow images collected in the Northeast of Brazil. Using simultaneous measurements of the background wind in the airglow emission altitudes, it was possible to estimate the intrinsic parameters and the role of the wind in the propagation of the waves into the thermosphere. An anisotropy in the propagation direction of the waves was observed and it could be explained by the wind filtering process.
Gabriel Augusto Giongo, José Valentin Bageston, Paulo Prado Batista, Cristiano Max Wrasse, Gabriela Dornelles Bittencourt, Igo Paulino, Neusa Maria Paes Leme, David C. Fritts, Diego Janches, Wayne Hocking, and Nelson Jorge Schuch
Ann. Geophys., 36, 253–264, https://doi.org/10.5194/angeo-36-253-2018, https://doi.org/10.5194/angeo-36-253-2018, 2018
Short summary
Short summary
This work presents four events of mesosphere fronts observed on King George Island, Antarctic Peninsula, in the year 2011. The atmospheric background environment was analyzed to investigate the propagation conditions for all cases. To investigate the sources for such cases, satellite images were used. In two cases, we found that strong tropospheric instabilities were potential sources, and in the other two cases, it was not possible to associate them with tropospheric sources.
Diego Barros, Hisao Takahashi, Cristiano M. Wrasse, and Cosme Alexandre O. B. Figueiredo
Ann. Geophys., 36, 91–100, https://doi.org/10.5194/angeo-36-91-2018, https://doi.org/10.5194/angeo-36-91-2018, 2018
I. Paulino, A. F. Medeiros, S. L. Vadas, C. M. Wrasse, H. Takahashi, R. A. Buriti, D. Leite, S. Filgueira, J. V. Bageston, J. H. A. Sobral, and D. Gobbi
Ann. Geophys., 34, 293–301, https://doi.org/10.5194/angeo-34-293-2016, https://doi.org/10.5194/angeo-34-293-2016, 2016
Short summary
Short summary
Periodic waves have been observed over São João do Cariri during almost one solar cycle. Similarities between the characteristics of these events with observations at other places around the world were noted, primarily the spectral parameters. Most observed waves have appeared during magnetically quiet nights, and the occurrence of those waves followed the solar activity. Due to their characteristics, most of them must have had different generation mechanisms from the Perkins instability.
A. F. Medeiros, I. Paulino, M. J. Taylor, J. Fechine, H. Takahashi, R. A. Buriti, L. M. Lima, and C. M. Wrasse
Ann. Geophys., 34, 91–96, https://doi.org/10.5194/angeo-34-91-2016, https://doi.org/10.5194/angeo-34-91-2016, 2016
Short summary
Short summary
This paper reports two consecutive mesospheric bores observed in the airglow emissions (OH and OI5577). Both bores propagated to the east and showed similar spectral characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region. However, the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Cosme A. O. B. Figueiredo, Ricardo A. Buriti, Hisao Takahashi, Delano Gobbi, and Gabriel A. Giongo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1982, https://doi.org/10.5194/egusphere-2024-1982, 2024
Short summary
Short summary
This work studies the dynamics of momentum and energy of upward and downward GW. From photometer, the vertical component of GWs were observed and horizontal component from an all-sky imager. Using these parameters from these two instruments and wind from meteor radar, the momentum flux and energy of the waves were determined and studied. It was observed that the dynamics of the downward GWs is opposite to that of the upward GWs.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Laysa C. A. Resende, Yajun Zhu, Clezio M. Denardini, Sony S. Chen, Ronan A. J. Chagas, Lígia A. Da Silva, Carolina S. Carmo, Juliano Moro, Diego Barros, Paulo A. B. Nogueira, José P. Marchezi, Giorgio A. S. Picanço, Paulo Jauer, Régia P. Silva, Douglas Silva, José A. Carrasco, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 40, 191–203, https://doi.org/10.5194/angeo-40-191-2022, https://doi.org/10.5194/angeo-40-191-2022, 2022
Short summary
Short summary
This study showed the ionospheric response over low-latitude regions in Brazil predicted by Martínez-Ledesma et al. (2020) for the solar eclipse event on 14 December 2020. We used a multi-instrumental and modeling analysis to observe the modifications in the E and F regions and the Es layers over Campo Grande and Cachoeira Paulista. The results showed that solar eclipses can cause significant ionosphere modifications even though they only partially reach the Brazilian low-latitude regions.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Lucí Hidalgo Nunes, Gerhard Held, Ana Maria Gomes, Kleber Pinheiro Naccarato, and Raul Reis Amorim
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-35, https://doi.org/10.5194/wcd-2021-35, 2021
Preprint withdrawn
Short summary
Short summary
During the night of 04/05 June 2016 Campinas, Brazil, was hit by a tornado and by intense lightning activity. The day (Sunday) and time of the tornado occurrence probably contributed to the fact that only a small number of persons suffered injuries, without any fatalities. The phenomenon was evaluated by means of radar observations, lightning activity and damages. The occurrence of the phenomenon has shown that the municipal government and citizens are unprepared to face this kind of event.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Oluwakemi Dare-Idowu, Igo Paulino, Cosme A. O. B. Figueiredo, Amauri F. Medeiros, Ricardo A. Buriti, Ana Roberta Paulino, and Cristiano M. Wrasse
Ann. Geophys., 38, 507–516, https://doi.org/10.5194/angeo-38-507-2020, https://doi.org/10.5194/angeo-38-507-2020, 2020
Short summary
Short summary
Some strong gravity wave activity occurred and was observed on 8 April 2005. This work reports the spectral characteristics of these waves using OH airglow images captured by the all-sky imager installed at São João do Cariri (7.4° S, 36.5° W). A preferential propagation direction was observed due to the positioning of the source and also due to the wind filtering effect. Furthermore, the source of these waves was identified by performing reverse-ray tracing analysis.
Igo Paulino, Ana Roberta Paulino, Ricardo Y. C. Cueva, Ebenezer Agyei-Yeboah, Ricardo Arlen Buriti, Hisao Takahashi, Cristiano Max Wrasse, Ângela M. Santos, Amauri Fragoso de Medeiros, and Inez S. Batista
Ann. Geophys., 38, 437–443, https://doi.org/10.5194/angeo-38-437-2020, https://doi.org/10.5194/angeo-38-437-2020, 2020
Short summary
Short summary
In this paper, an extensive study has been done in order to investigate periodic oscillations in the start times of equatorial plasma bubbles observed over Brazil. Using OI6300 airglow images and ionograms, it was possible to detect semimonthly oscillations in the start times of equatorial plasma bubbles (EPBs) and equatorial Spread-F. This semimonthly oscillation is likely related to the lunar tide, which represents an important mechanism acting in the day-to-day variability of EPBs.
Laysa Cristina Araujo Resende, Clezio Marcos Denardini, Giorgio Arlan Silva Picanço, Juliano Moro, Diego Barros, Cosme Alexandre Oliveira Barros Figueiredo, and Régia Pereira Silva
Ann. Geophys., 37, 807–818, https://doi.org/10.5194/angeo-37-807-2019, https://doi.org/10.5194/angeo-37-807-2019, 2019
Short summary
Short summary
The Brazilian Space Weather Study and Monitoring Program (Embrace) has been developing different indexes that describe ionospheric effects in the Brazilian sector. The main purpose of this work was to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity. We analyzed 7 years of data in order to construct a standardized scale. The results of this new index allow us to evaluate the impacts of ionospheric phenomena in the space weather environment.
Jean C. Santos and Cristiano M. Wrasse
Ann. Geophys., 37, 603–612, https://doi.org/10.5194/angeo-37-603-2019, https://doi.org/10.5194/angeo-37-603-2019, 2019
Short summary
Short summary
We describe a technique used to locate and classify critical points in 2-D flow fields at the solar photosphere obtained from the evolution of the line-of-sight magnetic field in a region close to the magnetic polarity inversion line of a fully emerged active region. We apply this technique to locate a particular kind of critical point associated to vortex flows, which are considered important, since they can twist and interweave the foot points of flux tubes and generate magnetic reconnection.
Patrick Essien, Igo Paulino, Cristiano Max Wrasse, Jose Andre V. Campos, Ana Roberta Paulino, Amauri F. Medeiros, Ricardo Arlen Buriti, Hisao Takahashi, Ebenezer Agyei-Yeboah, and Aline N. Lins
Ann. Geophys., 36, 899–914, https://doi.org/10.5194/angeo-36-899-2018, https://doi.org/10.5194/angeo-36-899-2018, 2018
Short summary
Short summary
Present work reports seasonal characteristics of small- and medium-scale gravity waves in the mesosphere and lower thermosphere region. All-sky images of the hydroxyl airglow emission layer over São João do Cariri (7.4° S, 36.5° W) were observed from September 2000 to December 2010, during a total of 1496 nights and obtained 2343 SSGW and 537 MSGW events. The horizontal propagation directions of SSGWs and MSGWs showed clear seasonal variations based on the influence of the wind filtering process.
Prosper K. Nyassor, Ricardo Arlen Buriti, Igo Paulino, Amauri F. Medeiros, Hisao Takahashi, Cristiano M. Wrasse, and Delano Gobbi
Ann. Geophys., 36, 705–715, https://doi.org/10.5194/angeo-36-705-2018, https://doi.org/10.5194/angeo-36-705-2018, 2018
Everton Frigo, Francesco Antonelli, Djeniffer S. S. da Silva, Pedro C. M. Lima, Igor I. G. Pacca, and José V. Bageston
Ann. Geophys., 36, 555–564, https://doi.org/10.5194/angeo-36-555-2018, https://doi.org/10.5194/angeo-36-555-2018, 2018
Amauri Fragoso Medeiros, Igo Paulino, Cristiano Max Wrasse, Joaquim Fechine, Hisao Takahashi, José Valentin Bageston, Ana Roberta Paulino, and Ricardo Arlen Buriti
Ann. Geophys., 36, 311–319, https://doi.org/10.5194/angeo-36-311-2018, https://doi.org/10.5194/angeo-36-311-2018, 2018
Short summary
Short summary
On 3 October 2005, a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W) propagating to the northeast in the OH airglow images. One and a half hours later, it disappeared completely and ripples were observed in the eastern part of the images. After studying the background atmosphere, the main conclusion of this work was that the instability in the airglow layer did not allow the propagation of the front to the other side of the local zenith.
Igo Paulino, Joyrles F. Moraes, Gleuson L. Maranhão, Cristiano M. Wrasse, Ricardo Arlen Buriti, Amauri F. Medeiros, Ana Roberta Paulino, Hisao Takahashi, Jonathan J. Makela, John W. Meriwether, and José André V. Campos
Ann. Geophys., 36, 265–273, https://doi.org/10.5194/angeo-36-265-2018, https://doi.org/10.5194/angeo-36-265-2018, 2018
Short summary
Short summary
This article presents characteristics of periodic waves observed in the thermosphere from airglow images collected in the Northeast of Brazil. Using simultaneous measurements of the background wind in the airglow emission altitudes, it was possible to estimate the intrinsic parameters and the role of the wind in the propagation of the waves into the thermosphere. An anisotropy in the propagation direction of the waves was observed and it could be explained by the wind filtering process.
Gabriel Augusto Giongo, José Valentin Bageston, Paulo Prado Batista, Cristiano Max Wrasse, Gabriela Dornelles Bittencourt, Igo Paulino, Neusa Maria Paes Leme, David C. Fritts, Diego Janches, Wayne Hocking, and Nelson Jorge Schuch
Ann. Geophys., 36, 253–264, https://doi.org/10.5194/angeo-36-253-2018, https://doi.org/10.5194/angeo-36-253-2018, 2018
Short summary
Short summary
This work presents four events of mesosphere fronts observed on King George Island, Antarctic Peninsula, in the year 2011. The atmospheric background environment was analyzed to investigate the propagation conditions for all cases. To investigate the sources for such cases, satellite images were used. In two cases, we found that strong tropospheric instabilities were potential sources, and in the other two cases, it was not possible to associate them with tropospheric sources.
Fabio Egito, Ricardo Arlen Buriti, Amauri Fragoso Medeiros, and Hisao Takahashi
Ann. Geophys., 36, 231–241, https://doi.org/10.5194/angeo-36-231-2018, https://doi.org/10.5194/angeo-36-231-2018, 2018
Diego Barros, Hisao Takahashi, Cristiano M. Wrasse, and Cosme Alexandre O. B. Figueiredo
Ann. Geophys., 36, 91–100, https://doi.org/10.5194/angeo-36-91-2018, https://doi.org/10.5194/angeo-36-91-2018, 2018
Fabio Egito, Hisao Takahashi, and Yasunobu Miyoshi
Ann. Geophys., 35, 1023–1032, https://doi.org/10.5194/angeo-35-1023-2017, https://doi.org/10.5194/angeo-35-1023-2017, 2017
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
I. Paulino, A. F. Medeiros, S. L. Vadas, C. M. Wrasse, H. Takahashi, R. A. Buriti, D. Leite, S. Filgueira, J. V. Bageston, J. H. A. Sobral, and D. Gobbi
Ann. Geophys., 34, 293–301, https://doi.org/10.5194/angeo-34-293-2016, https://doi.org/10.5194/angeo-34-293-2016, 2016
Short summary
Short summary
Periodic waves have been observed over São João do Cariri during almost one solar cycle. Similarities between the characteristics of these events with observations at other places around the world were noted, primarily the spectral parameters. Most observed waves have appeared during magnetically quiet nights, and the occurrence of those waves followed the solar activity. Due to their characteristics, most of them must have had different generation mechanisms from the Perkins instability.
A. F. Medeiros, I. Paulino, M. J. Taylor, J. Fechine, H. Takahashi, R. A. Buriti, L. M. Lima, and C. M. Wrasse
Ann. Geophys., 34, 91–96, https://doi.org/10.5194/angeo-34-91-2016, https://doi.org/10.5194/angeo-34-91-2016, 2016
Short summary
Short summary
This paper reports two consecutive mesospheric bores observed in the airglow emissions (OH and OI5577). Both bores propagated to the east and showed similar spectral characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region. However, the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region.
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Effects of nonmigrating diurnal tides on the Na layer in the mesosphere and lower thermosphere
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
Self-consistent global transport of metallic ions with WACCM-X
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model
Forcing mechanisms of the terdiurnal tide
Local time dependence of polar mesospheric clouds: a model study
The role of the winter residual circulation in the summer mesopause regions in WACCM
Influence of the sudden stratospheric warming on quasi-2-day waves
On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER
Environmental influences on the intensity changes of tropical cyclones over the western North Pacific
Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry
The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment
CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024, https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Short summary
We investigate the seasonal variation of westward-propagating quasi-10 d wave (Q10DW) activity in the southern high-latitude mesosphere. The observed Q10DW is amplified around equinoxes. The model experiments indicate that the Q10DW can be enhanced in the high-latitude mesosphere due to large-scale instability. However, an excessively strong instability in the summer mesosphere spuriously generates the Q10DW in the model, potentially leading to inaccurate model dynamics.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021, https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler
Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018, https://doi.org/10.5194/acp-18-15725-2018, 2018
Short summary
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Maartje Sanne Kuilman and Bodil Karlsson
Atmos. Chem. Phys., 18, 4217–4228, https://doi.org/10.5194/acp-18-4217-2018, https://doi.org/10.5194/acp-18-4217-2018, 2018
Short summary
Short summary
In this study, we investigate the role of the winter residual circulation in the summer mesopause region using the Whole Atmosphere Community Climate Model. In addition, we study the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. We strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
S. Palit, T. Basak, S. K. Mondal, S. Pal, and S. K. Chakrabarti
Atmos. Chem. Phys., 13, 9159–9168, https://doi.org/10.5194/acp-13-9159-2013, https://doi.org/10.5194/acp-13-9159-2013, 2013
M. T. Montgomery and R. K. Smith
Atmos. Chem. Phys., 12, 4001–4009, https://doi.org/10.5194/acp-12-4001-2012, https://doi.org/10.5194/acp-12-4001-2012, 2012
C. G. Hoffmann, D. E. Kinnison, R. R. Garcia, M. Palm, J. Notholt, U. Raffalski, and G. Hochschild
Atmos. Chem. Phys., 12, 3261–3271, https://doi.org/10.5194/acp-12-3261-2012, https://doi.org/10.5194/acp-12-3261-2012, 2012
Cited articles
Bageston, J. V., Wrasse, C. M., Gobbi, D., Takahashi, H., and Souza, P. B.: Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S), Ann. Geophys., 27, 2593–2598, https://doi.org/10.5194/angeo-27-2593-2009, 2009. a, b, c
Bageston, J. V., Wrasse, C. M., Batista, P. P., Hibbins, R. E., C Fritts, D., Gobbi, D., and Andrioli, V. F.: Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica, Atmos. Chem. Phys., 11, 12137–12147, https://doi.org/10.5194/acp-11-12137-2011, 2011. a
Bertin, F., Testud, J., Kersley, L., and Rees, P.: The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: an experimental study, J. Atmos. Terr. Phys., 40, 1161–1183, https://doi.org/10.1016/0021-9169(78)90067-3, 1978. a, b
Chimonas, G. and Hines, C.: Doppler ducting of atmospheric gravity waves, J. Geophys. Res.-Atmos., 91, 1219–1230, https://doi.org/10.1029/JD091iD01p01219, 1986. a
CPTEC: Center for Weather Forecasting and Climate Studies (CPTEC/INPE), http://satelite.cptec.inpe.br/ (last access: 10 April 2023), 2023. a
Dalin, P., Pogoreltsev, A., Pertsev, N., Perminov, V., Shevchuk, N., Dubietis, A., Zalcik, M., Kulikov, S., Zadorozhny, A., Kudabayeva, D., Solodovnik, A., Salakhutdinov, G., and Grigoryeva, I.: Evidence of the formation of noctilucent clouds due to propagation of an isolated gravity wave caused by a tropospheric occluded front, Geophys. Res. Lett., 42, 2037–2046, 2015. a, b
Dalin, P., Gavrilov, N., Pertsev, N., Perminov, V., Pogoreltsev, A., Shevchuk, N., Dubietis, A., Völger, P., Zalcik, M., Ling, A., Kulikov, S., Zadorozhny, A., Salakhutdinov, G., and Grigoryeva, I. : A case study of long gravity wave crests in noctilucent clouds and their origin in the upper tropospheric jet stream, J. Geophys. Res.-Atmos., 121, 14–102, 2016. a
Drob, D. P., Emmert, J. T., Meriwether, J. W.,Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., and McDonald, S. E., Huba, J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth Space Sci., 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015. a
EMBRACE: Estudo e Monitoramento Brasileiro do Clima Espacial – EMBRACE/INPE, http://www2.inpe.br/climaespacial/portal/en (last access: 10 October 2022), 2022. a
Fechine, J., Wrasse, C. M., Takahashi, H., Medeiros, A. F., Batista, P. P., Clemesha, B. R., Lima, L. M., Fritts, D., Laughman, B., Taylor, M. J., Pautet, P. D., Mlynczak, M. G., and Russell, J. M.: First observation of an undular mesospheric bore in a Doppler duct, Ann. Geophys., 27, 1399–1406, https://doi.org/10.5194/angeo-27-1399-2009, 2009. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a, b, c
Garcia, F., Taylor, M. J., and Kelley, M.: Two-dimensional spectral analysis of mesospheric airglow image data, Appl. Optics, 36, 7374–7385, https://doi.org/10.1364/AO.36.007374, 1997. a, b, c, d
Gavrilov, N., Fukao, S., Nakamura, T., Tsuda, T., Yamanaka, M., and Yamamoto, M.: Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere: 1. Method and general characteristics, J. Geophys. Res.-Atmos., 101, 29511–29521, https://doi.org/10.1029/96JD01447, 1996. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Giongo, G. A., Bageston, J. V., Figueiredo, C. A., Wrasse, C. M., Kam, H., Kim, Y. H., and Schuch, N. J.: Gravity Wave Investigations over Comandante Ferraz Antarctic Station in 2017: General Characteristics, Wind Filtering and Case Study, Atmosphere, 11, 880, https://doi.org/10.3390/atmos11080880, 2020. a
GMAO: MERRA-2 inst3_3d_asm_Np: 3d, 3-hourly, instantaneous, pressure-level, assimilation, assimilated meteorological fields V5. 12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/WWQSXQ8IVFW8, 2015. a
Gossard, E. E. and Hooke, W. H.: Waves in the atmosphere: atmospheric infrasound and gravity waves-their generation and propagation, Elsevier Scientific, Amsterdam, ISBN 9780444411969, 1975. a
Hapgood, M. and Taylor, M. J.: Analysis of airglow image data, Ann. Geophys., 38, 805–813, 1982. a
Heale, C. and Snively, J.: Gravity wave propagation through a vertically and horizontally inhomogeneous background wind, J. Geophys. Res.-Atmos., 120, 5931–5950, https://doi.org/10.1002/2015JD023505, 2015. a, b
Hecht, J., Walterscheid, R., Hickey, M. P., and Franke, S. J.: Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois, J. Geophys. Res.-Atmos., 106, 5181–5195, https://doi.org/10.1029/2000JD900722, 2001. a
Hersbach, H., Peubey, C., Simmons, A., Poli, P., Dee, D., and Berrisford, P.: ERA report series, https://cds.climate.copernicus.eu/ (last access: 5 May 2023), 2018. a
Holton, J. R. and Hakim, G. J.: An introduction to dynamic meteorology, Vol. 88, Academic Press, ISBN 978-0123848666, 2012. a
Hu, X., Liu, A. Z., Gardner, C. S., and Swenson, G. R.: Characteristics of quasi-monochromatic gravity waves observed with Na lidar in the mesopause region at Starfire Optical Range, NM, Geophys. Res. Lett., 29, 22–1, https://doi.org/10.1029/2002GL014975, 2002. a
Isler, J. R., Taylor, M. J., and Fritts, D. C.: Observational evidence of wave ducting and evanescence in the mesosphere, J. Geophys. Res.-Atmos., 102, 26301–26313, https://doi.org/10.1029/97JD01783, 1997. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, 1996, B. Am. Meteorol. Soc, 77, 437–431, 1996. a
Kaluza, T., Kunkel, D., and Hoor, P.: On the occurrence of strong vertical wind shear in the tropopause region: a 10-year ERA5 northern hemispheric study, Weather Clim. Dynam., 2, 631–651, https://doi.org/10.5194/wcd-2-631-2021, 2021. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M., and Potter, G.: Ncep–doe amip-ii reanalysis (r-2), B. Am. Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Kubota, M., Fukunishi, H., and Okano, S.: Characteristics of medium-and large-scale TIDs over Japan derived from OI 630-nm nightglow observation, Earth Planets Space, 53, 741–751, 2001. a
Lai, C., Li, W., Xu, J., Liu, X., Yuan, W., Yue, J., and Li, Q.: Extraction of quasi-monochromatic gravity waves from an airglow imager network, Stmosphere, 11, 615, https://doi.org/10.3390/atmos11060615, 2020. a
Lighthill, M.: Waves in Fluids, Cambridge University Press, ISBN 9780521216890, 1978. a
Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor detection using CloudSat – An Earth-orbiting 94-GHz cloud radar, J. Atmos. Ocean. Tech., 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1, 2008. a
Mastrantonio, G., Einaudi, F., Fua, D., and Lalas, D.: Generation of gravity waves by jet streams in the atmosphere, J. Atmos. Sci., 33, 1730–1738, https://doi.org/10.1175/1520-0469(1976)033<1730:GOGWBJ>2.0.CO;2, 1976. a, b, c
Menegardo-Souza, F., França, G. B., Menezes, W. F., and de Almeida, V. A.: In-Flight Turbulence Forecast Model Based on Machine Learning for the Santiago (Chile)–Mendoza (Argentina) Air Route, Pure Appl. Geophys., 179, 2591–2608, https://doi.org/10.1007/s00024-022-03053-5, 2022. a
Nappo, C. J.: An introduction to atmospheric gravity waves, Academic Press, ISBN 9780123852236, 2013. a
NOAA: NCEP-NCAR Reanalysis 1, NOAA, Physical Sciences Laboratory [data set], https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 20 July 2023. a
Nyassor, P. K., Wrasse, C. M., Gobbi, D., Paulino, I., Vadas, S. L., Naccarato, K. P., Takahashi, H., Bageston, J. V., Figueiredo, C. A. O. B., and Barros, D.: Case Studies on Concentric Gravity Waves Source Using Lightning Flash Rate, Brightness Temperature and Backward Ray Tracing at São Martinho da Serra (29.44° S, 53.82° W), J. Geophys. Res.-Atmos., 126, e2020JD034527, https://doi.org/10.1029/2020JD034527, 2021. a, b, c, d, e, f, g, h, i, j, k
Nyassor, P. K., Wrasse, C. M., Paulino, I., São Sabbas, E. F. M. T., Bageston, J. V., Naccarato, K. P., Gobbi, D., Figueiredo, C. A. O. B., Ayorinde, T. T., Takahashi, H., and Barros, D.: Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil, Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, 2022. a, b, c, d, e
Paulino, I., Takahashi, H., Vadas, S. L., Wrasse, C. M., Sobral, J., Medeiros, A., Buriti, R., and Gobbi, D.: Forward ray-tracing for medium-scale gravity waves observed during the COPEX campaign, J. Atmos. Sol.-Terr. Phy., 90, 117–123, https://doi.org/10.1016/j.jastp.2012.08.006, 2012. a, b, c, d
Peterson, A. W. and Adams, G. W.: OH airglow phenomena during the 5–6 July 1982 total lunar eclipse, Appl. Optics, 22, 2682–2685, 1983. a
Picone, J., Hedin, A., Drob, D. P., and Aikin, A.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, SIA 15-1–SIA 15-16, https://doi.org/10.1029/2002JA009430, 2002. a
Pramitha, M., Ratnam, M. V., Leena, P., Murthy, B. K., and Rao, S. V. B.: Identification of inertia gravity wave sources observed in the troposphere and the lower stratosphere over a tropical station Gadanki, Atmos. Res., 176, 202–211, https://doi.org/10.1016/j.atmosres.2016.03.001, 2016. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes, 3rd Edn., The art of scientific computing, Cambridge University Press, ISBN 9780521880688, 2007. a
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., and Lebair, W. J.: A closer look at the ABI on the GOES-R series, B. Am. Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/BAMS-D-15-00230.1, 2017. a
Shapiro, M.: The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems, Mon. Weather Rev., 104, 892–906, https://doi.org/10.1175/1520-0493(1976)104<0892:TROTHF>2.0.CO;2, 1976. a
Shapiro, M.: Further evidence of the mesoscale and turbulent structure of upper level jet stream–frontal zone systems, Mon. Weather Rev., 106, 1100–1111, https://doi.org/10.1175/1520-0493(1978)106<1100:FEOTMA>2.0.CO;2, 1978. a
Song, X.: The importance of including sea surface current when estimating air–sea turbulent heat fluxes and wind stress in the Gulf Stream region, J. Atmos. Ocean. Tech., 38, 119–138, https://doi.org/10.1175/JTECH-D-20-0094.1, 2021. a
Trier, S. B., Sharman, R. D., Muñoz-Esparza, D., and Lane, T. P.: Environment and mechanisms of severe turbulence in a midlatitude cyclone, J. Atmos. Sci., 77, 3869–3889, https://doi.org/10.1175/jas-d-20-0095.1, 2020. a
UWYO: University of Wyoming, https://weather.uwyo.edu/upperair/sounding.html (last access: 15 December 2022), 2022. a
Vadas, S. L. and Azeem, I.: Concentric secondary gravity waves in the thermosphere and ionosphere over the continental United States on March 25–26, 2015 from deep Convection, J. Geophys. Res.-Space, 126, e2020JA028275, https://doi.org/10.1029/2020JA028275, 2021. a
Vadas, S. L. and Fritts, D. C.: Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res.-Atmos., 110, D15103, https://doi.org/10.1029/2004JD005574, 2005. a, b
Vadas, S. L., Taylor, M. J., Pautet, P.-D., Stamus, P. A., Fritts, D. C., Liu, H.-L., São Sabbas, F. T., Rampinelli, V. T., Batista, P., and Takahashi, H.: Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Ann. Geophys., 27, 231–259, https://doi.org/10.5194/angeo-27-231-2009, 2009. a, b
Vadas, S. L., Yue, J., and Nakamura, T.: Mesospheric concentric gravity waves generated by multiple convective storms over the North American Great Plain, J. Geophys. Res.-Atmos., 117, D07113, https://doi.org/10.1029/2011JD017025, 2012. a
Van Den Broeke, M.: Seasonally and Diurnally Varying Cold Front Effects along the Minnesotan North Shore of Lake Superior, Atmosphere, 13, 441, https://doi.org/10.3390/atmos13030441, 2022. a
Walterscheid, R., Hecht, J., Vincent, R., Reid, I., Woithe, J., and Hickey, M.: Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia (35° S, 138° E), J. Atmos. Sol.-Terr. Phy., 61, 461–478, https://doi.org/10.1016/S1364-6826(99)00002-4, 1999. a, b
Wei, J. and Zhang, F.: Mesoscale gravity waves in moist baroclinic jet-front systems, J. Atmos. Sci., 71, 929–952, https://doi.org/10.1175/JAS-D-13-0171.1, 2014. a
Wrasse, C. M. and Nyassor, P. K.: July 20–21, 2017 Quasi-Monochromatic Gravity Wave Event, TiB [video], https://doi.org/10.5446/65557, 2023. a
Wrasse, C. M., Takahashi, H., Medeiros, A. F., Lima, L. M., Taylor, M. J., Gobbi, D., and Fechine, J.: Determinaçao dos parâmetros de ondas de gravidade através da análise espectral de imagens de aeroluminescência, Revista Brasileira de Geofísica, 25, 257–265, https://doi.org/10.1590/S0102-261X2007000300003, 2007. a, b, c
Xu, J., Li, Q., Yue, J., Hoffmann, L., Straka I., William C., Wang, C., Liu, M., Yuan, W., Han, S., Miller, S. D., Sun, L., Liu, X., Liu, W., Yang, J., and Ning, B.: Concentric gravity waves over northern China observed by an airglow imager network and satellites, J. Geophys. Res.-Atmos., 120, 11058–11078, https://doi.org/10.1002/2015JD023786, 2015. a, b, c, d
Zhang, F., Wei, J., Zhang, M., Bowman, K. P., Pan, L. L., Atlas, E., and Wofsy, S. C.: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment, Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015, 2015. a
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
This present work investigates the propagation dynamics and the sources–source mechanisms of...
Altmetrics
Final-revised paper
Preprint