Articles | Volume 24, issue 9
https://doi.org/10.5194/acp-24-5265-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-5265-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
now at: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
Rebecca H. Schwantes
CORRESPONDING AUTHOR
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Matthew Coggon
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Colin Harkins
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
Jordan Schnell
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
NOAA Global Systems Laboratory, Boulder, CO 80305, USA
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
Havala O. T. Pye
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
Barry Baker
NOAA Air Resources Laboratory, College Park, MD 20740, USA
Zachary Moon
NOAA Air Resources Laboratory, College Park, MD 20740, USA
Earth Resources Technology (ERT), Inc., Laurel, MD 20707, USA
Ravan Ahmadov
NOAA Global Systems Laboratory, Boulder, CO 80305, USA
Eva Y. Pfannerstill
Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
now at: Institute for Energy and Climate Research 8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, Germany
Bryan Place
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
Paul Wooldridge
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
Benjamin C. Schulze
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Caleb Arata
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
Anthony Bucholtz
Department of Meteorology, Naval Postgraduate School, Monterey, CA 93943, USA
John H. Seinfeld
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Carsten Warneke
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Chelsea E. Stockwell
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
now at: Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MI 63130, USA
Kristen Zuraski
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
Michael A. Robinson
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
J. Andrew Neuman
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Patrick R. Veres
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
now at: Research Aviation Facility, National Center for Atmospheric Research, Boulder, CO 80301, USA
Jeff Peischl
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Cooperative Institute for Research in Environmental Sciences – University of Colorado, Boulder, CO 80309, USA
Steven S. Brown
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Department of Chemistry, University of Colorado, Boulder, Boulder, CO 80309, USA
Allen H. Goldstein
Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
Ronald C. Cohen
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
Brian C. McDonald
NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
Viewed
Total article views: 2,519 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Nov 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,024 | 446 | 49 | 2,519 | 145 | 45 | 57 |
- HTML: 2,024
- PDF: 446
- XML: 49
- Total: 2,519
- Supplement: 145
- BibTeX: 45
- EndNote: 57
Total article views: 1,824 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 May 2024)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,554 | 244 | 26 | 1,824 | 91 | 27 | 30 |
- HTML: 1,554
- PDF: 244
- XML: 26
- Total: 1,824
- Supplement: 91
- BibTeX: 27
- EndNote: 30
Total article views: 695 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Nov 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
470 | 202 | 23 | 695 | 54 | 18 | 27 |
- HTML: 470
- PDF: 202
- XML: 23
- Total: 695
- Supplement: 54
- BibTeX: 18
- EndNote: 27
Viewed (geographical distribution)
Total article views: 2,519 (including HTML, PDF, and XML)
Thereof 2,520 with geography defined
and -1 with unknown origin.
Total article views: 1,824 (including HTML, PDF, and XML)
Thereof 1,822 with geography defined
and 2 with unknown origin.
Total article views: 695 (including HTML, PDF, and XML)
Thereof 698 with geography defined
and -3 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
4 citations as recorded by crossref.
- Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles E. Pfannerstill et al. 10.1126/science.adg8204
- Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) T. Skipper et al. 10.5194/acp-24-12903-2024
- The long-term impact of biogenic volatile organic compound emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation M. Liaskoni et al. 10.5194/acp-24-13541-2024
- A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles Q. Zhu et al. 10.5194/acp-24-5265-2024
3 citations as recorded by crossref.
- Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles E. Pfannerstill et al. 10.1126/science.adg8204
- Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) T. Skipper et al. 10.5194/acp-24-12903-2024
- The long-term impact of biogenic volatile organic compound emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation M. Liaskoni et al. 10.5194/acp-24-13541-2024
Latest update: 25 Dec 2024
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and...
Altmetrics
Final-revised paper
Preprint