Articles | Volume 24, issue 3
https://doi.org/10.5194/acp-24-1659-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-1659-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
András Hoffer
CORRESPONDING AUTHOR
HUN-REN-PE Air Chemistry Research Group, Veszprém, 8200, Hungary
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Aida Meiramova
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Ádám Tóth
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Beatrix Jancsek-Turóczi
HUN-REN-PE Air Chemistry Research Group, Veszprém, 8200, Hungary
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Gyula Kiss
Renewable Energy Research Group, University of Pannonia Nagykanizsa – University Center for Circular Economy, Nagykanizsa, 8800, Hungary
Ágnes Rostási
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Erika Andrea Levei
Research Institute for Analytical Instrumentation Subsidiary, INCDO-INOE 2000, Cluj-Napoca, 400293, Romania
Luminita Marmureanu
National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomiştilor, 077125, Măgurele, Ilfov, Romania
National Institute for Research and Development in Forestry “Marin Drăcea” – INCDS, Voluntari, 077030, Romania
Attila Machon
Air Quality Reference Centre, Hungarian Meteorological Service, Budapest, 1181, Hungary
András Gelencsér
HUN-REN-PE Air Chemistry Research Group, Veszprém, 8200, Hungary
Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, 8200, Hungary
Related authors
András Hoffer, Ádám Tóth, Beatrix Jancsek-Turóczi, Attila Machon, Aida Meiramova, Attila Nagy, Luminita Marmureanu, and András Gelencsér
Atmos. Chem. Phys., 21, 17855–17864, https://doi.org/10.5194/acp-21-17855-2021, https://doi.org/10.5194/acp-21-17855-2021, 2021
Short summary
Short summary
Due to the widespread use of plastics high amounts of waste are burned in households worldwide, emitting vast amounts of PM10 and PAHs into the atmosphere. In this work different types of common plastics were burned in the laboratory with a view to identifying potentially specific tracer compounds and determining their emission factors. The compounds found were also successfully identified in atmospheric PM10 samples, indicating their potential use as ambient tracers for illegal waste burning.
András Hoffer, Beatrix Jancsek-Turóczi, Ádám Tóth, Gyula Kiss, Anca Naghiu, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020, https://doi.org/10.5194/acp-20-16135-2020, 2020
Short summary
Short summary
Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) are reported for the first time ever for the indoor combustion of 12 common types of municipal solid waste that are frequently burned in households worldwide. We have found that waste burning emits up to 40 times more PM10 and 800 times more PAHs than the combustion of dry firewood. Our finding highlights the need for coordinated actions against illegal waste combustion and the extreme health hazard associated with it.
Oana Teodora Moldovan, Crin-Triandafil Theodorescu, and Erika Andrea Levei
EGUsphere, https://doi.org/10.5194/egusphere-2025-2507, https://doi.org/10.5194/egusphere-2025-2507, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study examines the microbial and geochemical environment surrounding mirabilite deposits in Izvorul Tăușoarelor Cave (Romanian Carpathians). Using a metabarcoding approach, the microbial profiling is unique: sulfur-reducing bacteria were absent in mirabilite samples. The presence of ammonia-oxidising archaea exclusively in the mirabilite area indicates a possible influence from a bat colony, which contributes minimal ammonia that supports the microbial equilibrium for mirabilite growth.
András Hoffer, Ádám Tóth, Beatrix Jancsek-Turóczi, Attila Machon, Aida Meiramova, Attila Nagy, Luminita Marmureanu, and András Gelencsér
Atmos. Chem. Phys., 21, 17855–17864, https://doi.org/10.5194/acp-21-17855-2021, https://doi.org/10.5194/acp-21-17855-2021, 2021
Short summary
Short summary
Due to the widespread use of plastics high amounts of waste are burned in households worldwide, emitting vast amounts of PM10 and PAHs into the atmosphere. In this work different types of common plastics were burned in the laboratory with a view to identifying potentially specific tracer compounds and determining their emission factors. The compounds found were also successfully identified in atmospheric PM10 samples, indicating their potential use as ambient tracers for illegal waste burning.
András Hoffer, Beatrix Jancsek-Turóczi, Ádám Tóth, Gyula Kiss, Anca Naghiu, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020, https://doi.org/10.5194/acp-20-16135-2020, 2020
Short summary
Short summary
Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) are reported for the first time ever for the indoor combustion of 12 common types of municipal solid waste that are frequently burned in households worldwide. We have found that waste burning emits up to 40 times more PM10 and 800 times more PAHs than the combustion of dry firewood. Our finding highlights the need for coordinated actions against illegal waste combustion and the extreme health hazard associated with it.
Cited articles
Bodzay, B. and Bánhegyi, G.: Polymer waste: controlled breakdown or recycling?, Int. J. Des. Sci. Technol., 22, 109–138, 2016..
Caseiro, A., Bauer, H., Schmidl, C., Pio, C. A., and Puxbaum, H.: Wood burning impact on PM10 in three Austrian regions, Atmos. Environ., 43, 2186–2195, https://doi.org/10.1016/j.atmosenv.2009.01.012, 2009.
Christian, T. J., Yokelson, R. J., Cárdenas, B., Molina, L. T., Engling, G., and Hsu, S.-C.: Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico, Atmos. Chem. Phys., 10, 565–584, https://doi.org/10.5194/acp-10-565-2010, 2010.
Fabbri, D., Torri, C., Simonei, B. R. T., Marynowski L., Rushdi A. I., and Fabianska M. J.: Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites, Atmos. Environ., 43, 2286–2295, 2009.
Furman, P., Styszko, K., Skiba, A., Zieba, D., Zimnoch, M., Kistler, M., Kasper-Giebl, A., and Gilardoni, S.: Seasonal Variability of PM10 Chemical Composition Including 1,3,5-triphenylbenzene, Marker of Plastic Combustion and Toxicity in Wadowice, South Poland, Aerosol Air Qual. Res., 21, 200223, https://doi.org/10.4209/aaqr.2020.05.0223, 2021.
Hoffer, A., Jancsek-Turóczi, B., Tóth, Á., Kiss, G., Naghiu, A., Levei, E. A., Marmureanu, L., Machon, A., and Gelencsér, A.: Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households, Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020, 2020.
Hoffer, A., Tóth, Á., Jancsek-Turóczi, B., Machon, A., Meiramova, A., Nagy, A., Marmureanu, L., and Gelencsér, A.: Potential new tracers and their mass fraction in the emitted PM10 from the burning of household waste in stoves, Atmos. Chem. Phys., 21, 17855–17864, https://doi.org/10.5194/acp-21-17855-2021, 2021.
Islam, M. R., Li, T., Mahata, K., Khanal, N., Werden, B., Giordano, M. R., Puppala, S. P., Dhital, N. B., Gurung, A., Saikawa, E., Panday, A. K., Yokelson, R. J., DeCarlo, P. F., and Stone, E. A.: Wintertime Air Quality across the Kathmandu Valley, Nepal: Concentration, Composition, and Sources of Fine and Coarse Particulate Matter, ACS Earth Sp. Chem., 6, 2955–2971, https://doi.org/10.1021/acsearthspacechem.2c00243, 2022.
Kantar Hoffmann Ltd.: Household waste burning habits in Hungary, https://www.levego.hu/sites/default/files/Kantar_Hoffmann_Levego_MCS_Hulladekegetes_2017dec.pdf last access: 20 February 2021 (in Hungarian).
Jimenez, J., Farias, O., Quiroz, R., and Yanez, J.: Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile, J. Air Waste Manag. Assoc., 67, 806–813, https://doi.org/10.1080/10962247.2017.1295114, 2017.
Jones, A. M. and Harrison, R. M.: Emission of ultrafine particles from the incineration of municipal solid waste: A review, Atmos. Environ., 140, 519–528, https://doi.org/10.1016/j.atmosenv.2016.06.005, 2016.
Kanellopoulos, P. G., Verouti, E., Chrysochou, E., Koukoulakis, K., and Bakeas, E.: Primary and secondary organic aerosol in an urban/industrial site: Sources, health implications and the role of plastic enriched waste burning, J. Environ. Sci., 99, 222–238, https://doi.org/10.1016/j.jes.2020.06.012, 2021.
Krahl, J., Seidel, H., Jeberien, H. E., Ruckert, M., and Bahadir, M.: Pilot study: PAH fingerprints of aircraft exhaust in comparison with diesel engine exhaust, Fresen. J. Anal. Chem., 360, 693–696, 1998.
Kumar, S., Aggarwal, S. G., Gupta, P. K., and Kawamura, K.: Investigation of the tracers for plastic-enriched waste burning aerosols, Atmos. Environ., 108, 49–58, https://doi.org/10.1016/j.atmosenv.2015.02.066, 2015.
Lemieux, P. M., Lutes, C. C., and Santoianni, D. A.: Emissions of organic air toxics from open burning: a comprehensive review, Prog. Energ. Combust., 30, 1–32, https://doi.org/10.1016/j.pecs.2003.08.001, 2004.
Li, B. and Fang, J.: The Detection and Environmental Significance of 5'Phenyl1, 1': 3',1”Terphenyl from the Atmosphere in Beijing, 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, 11–16 June 2009, Beijing, China, https://doi.org/10.1109/ICBBE.2009.5163587, 2009.
Marmureanu, L., Vasilescu, J., Slowik, J., Prevot, A. S. H., Marin, C. A., Antonescu, B., Vlachou, A., Nemuc, A., Dandocsi, A., and Szidat, S.: Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in Măgurele, Romania, Atmosphere, 11, 385, https://doi.org/10.3390/atmos11040385, 2020.
Ramadan, B. S., Rachman, I., Ikhlas, N., Kurniawan, S. B., Miftahadi, M. F., and Matsumoto, T.: A comprehensive review of domestic-open waste burning: recent trends, methodology comparison, and factors assessment, J. Mater. Cycles Waste, 24, 1633–1647, https://doi.org/10.1007/s10163-022-01430-9, 2022.
Salma, I., Németh, Z., Weidinger, T., Maenhaut, W., Claeys, M., Molnár, M., Major, I., Ajtai, T., Utry, N., and Bozóki, Z.: Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method, Atmos. Chem. Phys., 17, 13767–13781, https://doi.org/10.5194/acp-17-13767-2017, 2017.
Simoneit, B. R. T., Medeiros, P. M., and Didyk, B. M.: Combustion products of plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Technol., 39, 6961–6970, https://doi.org/10.1021/es050767x, 2005.
Wiedinmyer, C., Yokelson, R. J., and Gullett, B. K.: Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste, Environ. Sci. Technol., 48, 9523–9530, https://doi.org/10.1021/es502250z, 2014.
Zhao, W., Kawamura, K., Yue, S., Wei, L., Ren, H., Yan, Y., Kang, M., Li, L., Ren, L., Lai, S., Li, J., Sun, Y., Wang, Z., and Fu, P.: Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China, Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, 2018.
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Specific tracer compounds identified previously in controlled test burnings of different waste...
Altmetrics
Final-revised paper
Preprint