Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10741-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-10741-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling the discrepancies between Eulerian and Lagrangian moisture tracking models in monsoon- and westerly-dominated basins of the Tibetan Plateau
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Yichang, China
Three Gorges Reservoir Ecosystem Field Scientific Observation and Research Station, China Three Gorges University, Yichang, China
Chenghao Wang
School of Meteorology, University of Oklahoma, Norman, OK, USA
Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA
Qiuhong Tang
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Shibo Yao
China Meteorological Administration Key Laboratory for Climate Prediction Studies, National Climate Centre, Beijing, China
Bo Sun
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
Hui Peng
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
Shangbin Xiao
CORRESPONDING AUTHOR
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Yichang, China
Three Gorges Reservoir Ecosystem Field Scientific Observation and Research Station, China Three Gorges University, Yichang, China
Related authors
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-126, https://doi.org/10.5194/hess-2024-126, 2024
Revised manuscript under review for HESS
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. It provides insights into comprehensive changes of flood events, and aids in flood prediction and control.
Haiwei Li, Yongling Zhao, Chenghao Wang, Diana Ürge-Vorsatz, Jan Carmeliet, and Ronita Bardhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-234, https://doi.org/10.5194/egusphere-2024-234, 2024
Short summary
Short summary
We investigated the cooling efficacy of urban trees in different climate zones through a robust meta-analysis, we determine that the cooling efficacy of trees is significantly influenced by the interplay of urban morphology, tree traits, and climate zones. We complement the study by an interactive map, offering a visual and quantitative examination and comparison of the cooling effects of urban trees in different climate zones.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Farhad Hooshyaripor, Sanaz Faraji-Ashkavar, Farshad Koohyian, Qiuhong Tang, and Roohollah Noori
Nat. Hazards Earth Syst. Sci., 20, 2739–2751, https://doi.org/10.5194/nhess-20-2739-2020, https://doi.org/10.5194/nhess-20-2739-2020, 2020
Short summary
Short summary
The effect of El Niño on flood damage was investigated. The methodology was based on the calculation of increasing rainfall amount during El Niño events compared to normal conditions. With the southern oscillation index equal to −1.0 as the threshold of El Niño, the annual percentage of increased rainfall is 12.2 %. The annual change factor may not necessarily be transferred to extreme values. Nonetheless, the change factor was applied for generating simulated storms of different return periods.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Wenli Zhang, Shangbin Xiao, Heng Xie, Jia Liu, Dan Lei, and Andreas Lorke
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-178, https://doi.org/10.5194/bg-2020-178, 2020
Manuscript not accepted for further review
Short summary
Short summary
We analyzed CH4 emissions from a shallow and small eutrophic pond and found that 88.6 % of CH4 emissions was directly released by bubbling. The higher the temperature, the higher the eutrophication level and the greater the amount of methane released. Our study highlights that increasing eutrophication by anthropogenic impacts and climate warming will increase CH4 emissions from ponds, thus representing a positive feedback mechanism to global warming.
X. Xu and Q. Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 1065–1069, https://doi.org/10.5194/isprs-archives-XLII-4-W18-1065-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-1065-2019, 2019
P. Attarod, Q. Tang, J. T. Van Stan II, T. G. Pypker, and X. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 117–125, https://doi.org/10.5194/isprs-archives-XLII-4-W18-117-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-117-2019, 2019
X. Liu and Q. Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 679–682, https://doi.org/10.5194/isprs-archives-XLII-4-W18-679-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-679-2019, 2019
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Qinghuan Zhang, Qiuhong Tang, John F. Knowles, and Ben Livneh
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52, https://doi.org/10.5194/hess-2019-52, 2019
Manuscript not accepted for further review
Short summary
Short summary
The uncertainty from model parameters is not well understood compared to that from climate data in hydrologic modeling. This study quantifies the projection uncertainty in three hydrologic variables using a group of best performing parameter sets. It shows that model parameter uncertainty takes an important role in hydrologic modeling, especially for seasonal projections. Thus it is necessary to consider multiple optimal parameter sets in hydrologic projection and water resources management.
Jian Cao, Bin Wang, Young-Min Yang, Libin Ma, Juan Li, Bo Sun, Yan Bao, Jie He, Xiao Zhou, and Liguang Wu
Geosci. Model Dev., 11, 2975–2993, https://doi.org/10.5194/gmd-11-2975-2018, https://doi.org/10.5194/gmd-11-2975-2018, 2018
Short summary
Short summary
The development of version 3 of the Nanjing University of Information Science and Technology (NUIST) Earth System Model (NESM v3) aims at building up a comprehensive numerical modeling laboratory for multidisciplinary studies of the climate system and Earth system. The model evaluation shows the model obtained stable long-term integrations and reasonable global mean states under preindustrial (PI) forcing and simulated reasonable climate responses to transient and abrupt CO2 forcing.
Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, https://doi.org/10.5194/hess-22-2117-2018, 2018
Short summary
Short summary
This study generate a historical global monthly gridded water withdrawal data (0.5 × 0.5 degrees) for the period 1971–2010, distinguishing six water use sectors (irrigation, domestic, electricity generation, livestock, mining, and manufacturing). This dataset is the first reconstructed global water withdrawal data product at sub-annual and gridded resolution that is derived from different models and data sources, and was generated by spatially and temporally downscaling country-scale estimates.
Chi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui
Atmos. Chem. Phys., 17, 10383–10393, https://doi.org/10.5194/acp-17-10383-2017, https://doi.org/10.5194/acp-17-10383-2017, 2017
Short summary
Short summary
Precipitation over Southwest China (SWC) has decreased significantly in recent years. By tracking precipitation moisture, we found that the reduced precipitation results from the reduced moisture supply from the extended west, which is influenced by the South Asian summer monsoon and the westerlies. Further study revealed the dynamic variations in circulation dominate the interannual variations in SWC precipitation. Changes in circulation systems may be related to the recent changes in SSTs.
Yuanyuan Yin, Qiuhong Tang, Xingcai Liu, and Xuejun Zhang
Hydrol. Earth Syst. Sci., 21, 791–804, https://doi.org/10.5194/hess-21-791-2017, https://doi.org/10.5194/hess-21-791-2017, 2017
Short summary
Short summary
We assess water scarcity under various socio-economic pathways and its impact on food production in the Yellow River basin. The rapidly increasing industrial water demand will put the middle and lower reaches in a condition of water scarcity. The industrial water demand is the main contributing factor to water scarcity. Water scarcity will lead to at least 9 % reduction in food production in 2084. This suggests that a trade-offs should be considered when developing regional adaptation strategies.
Xingcai Liu, Qiuhong Tang, Nathalie Voisin, and Huijuan Cui
Hydrol. Earth Syst. Sci., 20, 3343–3359, https://doi.org/10.5194/hess-20-3343-2016, https://doi.org/10.5194/hess-20-3343-2016, 2016
Short summary
Short summary
Impacts of climate change on hydropower potential of China are investigated using projections from multiple general circulation models and global hydrological models. Results show that the projected total hydropower potential of China generally increases (e.g., in southwest China) while the maximum production of current hydropower stations may decrease (e.g., in Sichuan and Hubei provinces) in the future. This study prompts the consideration of climate change in hydropower planning in China.
R. G. Anderson, M.-H. Lo, S. Swenson, J. S. Famiglietti, Q. Tang, T. H. Skaggs, Y.-H. Lin, and R.-J. Wu
Geosci. Model Dev., 8, 3021–3031, https://doi.org/10.5194/gmd-8-3021-2015, https://doi.org/10.5194/gmd-8-3021-2015, 2015
Short summary
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
Y. Yin, Q. Tang, and X. Liu
Earth Syst. Dynam., 6, 45–59, https://doi.org/10.5194/esd-6-45-2015, https://doi.org/10.5194/esd-6-45-2015, 2015
X. Liu, X.-J. Zhang, Q. Tang, and X.-Z. Zhang
Hydrol. Earth Syst. Sci., 18, 2803–2813, https://doi.org/10.5194/hess-18-2803-2014, https://doi.org/10.5194/hess-18-2803-2014, 2014
Y. Tang, Q. Tang, F. Tian, Z. Zhang, and G. Liu
Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, https://doi.org/10.5194/hess-17-4471-2013, 2013
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
Related subject area
Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol–cloud interactions?
Constraining net long-term climate feedback from satellite-observed internal variability possible by the mid-2030s
Investigation of the characteristics of low-level jets over North America in a convection-permitting Weather Research and Forecasting simulation
Impacts of tropical cyclone–heat wave compound events on surface ozone in eastern China: comparison between the Yangtze River and Pearl River deltas
The 2023 global warming spike was driven by the El Niño–Southern Oscillation
Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions
A novel method for detecting tropopause structures based on the bi-Gaussian function
Increasing aerosol direct effect despite declining global emissions in MPI-ESM1.2
Multi-scale variability of southeastern Australian wind resources
Parameterizations for global thundercloud corona discharge distributions
The importance of an informed choice of CO2-equivalence metrics for contrail avoidance
Relative humidity over ice as a key variable for Northern Hemisphere midlatitude tropopause inversion layers
Technical Note: Recommendations for Diagnosing Cloud Feedbacks and Rapid Cloud Adjustments Using Cloud Radiative Kernels
Modelled surface climate response to Icelandic effusive volcanic eruptions: Sensitivity to season and size
Technical note: Posterior uncertainty estimation via a Monte Carlo procedure specialized for 4D-Var data assimilation
Understanding the role of contrails and contrail cirrus in climate change: a global perspective
Interannual variations in Siberian carbon uptake and carbon release period
Using historical temperature to constrain the climate sensitivity, the transient climate response, and aerosol-induced cooling
Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model
Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming
General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Global scenarios of anthropogenic mercury emissions
Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases
Satellite quantification of methane emissions from South American countries: A high-resolution inversion of TROPOMI and GOSAT observations
Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence
Assessing methane emissions from collapsing Venezuelan oil production using TROPOMI
Small emission sources disproportionately account for a large majority of total methane emissions from the US oil and gas sector
To what extent does CO2 diurnal cycle impact carbon flux estimates in CarboScope?
Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming
Simulation of ozone–vegetation coupling and feedback in China using multiple ozone damage schemes
Opinion: Can uncertainty in climate sensitivity be narrowed further?
Significant human health co-benefits of mitigating African emissions
Water vapour exchange between the atmospheric boundary layer and free troposphere over eastern China: seasonal characteristics and the El Niño–Southern Oscillation anomaly
Strong aerosol cooling alone does not explain cold-biased mid-century temperatures in CMIP6 models
Air pollution reductions caused by the COVID-19 lockdown open up a way to preserve the Himalayan glaciers
Modeling atmosphere–land interactions at a rainforest site – a case study using Amazon Tall Tower Observatory (ATTO) measurements and reanalysis data
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Alejandro Uribe, Frida A.-M. Bender, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 13371–13384, https://doi.org/10.5194/acp-24-13371-2024, https://doi.org/10.5194/acp-24-13371-2024, 2024
Short summary
Short summary
Our study explores climate feedbacks, vital for understanding global warming. It links them to shifts in Earth's energy balance at the atmosphere's top due to natural temperature variations. It takes roughly 50 years to establish this connection. Combined satellite observations and reanalysis suggest that Earth cools more than expected under carbon dioxide influence. However, continuous satellite data until at least the mid-2030s are crucial for refining our understanding of climate feedbacks.
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024, https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Short summary
This study uses 4 km Weather Research and Forecasting simulations to investigate the features of low-level jets (LLJs) in North America. It identifies significant LLJ systems, such as the Great Plains LLJ. It also provides insight into LLJs poorly captured in coarser models, such as the northerly Quebec LLJ and the small-scale, low-level wind maxima around the Rocky Mountains. Furthermore, the study examines different physical mechanisms of forming three distinct types of LLJs.
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024, https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
Short summary
We investigate extremely hot weather impacts on surface ozone over the southeastern coast of China with and without tropical cyclones. Compared to hot days alone, ozone concentration decreased notably in the Yangtze River Delta (YRD) but increased in the Pearl River Delta (PRD) during tropical cyclones and hot days. The YRD benefited from strong and clean sea winds aiding ozone elimination. In contrast, the PRD experienced strong northeasterly winds that potentially transport ozone pollution.
Shiv Priyam Raghuraman, Brian Soden, Amy Clement, Gabriel Vecchi, Sofia Menemenlis, and Wenchang Yang
Atmos. Chem. Phys., 24, 11275–11283, https://doi.org/10.5194/acp-24-11275-2024, https://doi.org/10.5194/acp-24-11275-2024, 2024
Short summary
Short summary
The rapid global warming of 2023 has led to concerns that it could be externally driven. Here we show that climate models subject only to internal variability predict such warming spikes but rarely (p~1.6 %). However, when a prolonged La Niña immediately precedes an El Niño, as occurred leading up to 2023, such spikes are not uncommon (p~10.3 %). Virtually all of the spikes occur during an El Niño, strongly suggesting that internal variability drove the 2023 warming.
Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024, https://doi.org/10.5194/acp-24-11207-2024, 2024
Short summary
Short summary
Present-day methane shortwave absorption mutes 28% (7–55%) of the surface warming associated with its longwave absorption. The precipitation increase associated with the longwave radiative effects of the present-day methane perturbation is also muted by shortwave absorption but not significantly so. Methane shortwave absorption also impacts the magnitude of its climate feedback parameter, largely through the cloud feedback.
Kun Zhang, Tao Luo, Xuebin Li, Shengcheng Cui, Ningquan Weng, Yinbo Huang, and Yingjian Wang
Atmos. Chem. Phys., 24, 11157–11173, https://doi.org/10.5194/acp-24-11157-2024, https://doi.org/10.5194/acp-24-11157-2024, 2024
Short summary
Short summary
In order to deeply understand the formation mechanisms and evolution processes associated with vertical tropopause structures, this study proposes a new method for identifying the multiple characteristic parameters of vertical tropopause structures by fitting temperature profiles using the bi-Gaussian function. The identification results from the bi-Gaussian method are more reasonable and more consistent with the evolution process of atmospheric thermal stratifications.
Antoine Hermant, Linnea Huusko, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 10707–10715, https://doi.org/10.5194/acp-24-10707-2024, https://doi.org/10.5194/acp-24-10707-2024, 2024
Short summary
Short summary
Aerosol particles, from natural and human sources, have a cooling effect on the climate, partially offsetting global warming. They do this through direct (sunlight reflection) and indirect (cloud property alteration) mechanisms. Using a global climate model, we found that, despite declining emissions, the direct effect of human aerosols has increased while the indirect effect has decreased, which is attributed to the shift in emissions from North America and Europe to Southeast Asia.
Claire L. Vincent and Andrew J. Dowdy
Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024, https://doi.org/10.5194/acp-24-10209-2024, 2024
Short summary
Short summary
We investigate how wind speed at the height of a wind turbine changes during El Niño and La Niña years and with season and time of day in southeastern Australia. We found that El Niño and La Niña can cause average wind speed differences of around 1 m s-1 in some regions. The highest wind speeds occur in the afternoon or evening around mountains or the coast and during the night for inland areas. The results help show how placement of wind turbines can help balance electricity generation.
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024, https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
Short summary
Sudden local ozone (O3) enhancements have been reported in different regions of the world since the 1970s. While the hot channel of lightning strokes directly produce significant amounts of nitrogen oxide, no direct emission of O3 is expected. Corona discharges in convective active regions could explain local O3 increases, which remains unexplained. We present the first mathematical functions that relate the global annual frequency of in-cloud coronas with four sets of meteorological variables.
Audran Borella, Olivier Boucher, Keith P. Shine, Marc Stettler, Katsumasa Tanaka, Roger Teoh, and Nicolas Bellouin
Atmos. Chem. Phys., 24, 9401–9417, https://doi.org/10.5194/acp-24-9401-2024, https://doi.org/10.5194/acp-24-9401-2024, 2024
Short summary
Short summary
This work studies how to compare the climate impact of the CO2 emitted and contrails formed by a flight. This is applied to contrail avoidance strategies that would decrease climate impact of flights by changing the trajectory of aircraft to avoid persistent contrail formation, at the risk of increasing CO2 emissions. We find that different comparison methods lead to different quantification of the total climate impact of a flight but lead to similar decisions of whether to reroute an aircraft.
Daniel Köhler, Philipp Reutter, and Peter Spichtinger
Atmos. Chem. Phys., 24, 10055–10072, https://doi.org/10.5194/acp-24-10055-2024, https://doi.org/10.5194/acp-24-10055-2024, 2024
Short summary
Short summary
In this work, the influence of humidity on the properties of the tropopause is studied. The tropopause is the interface between the troposphere and the stratosphere and represents a barrier for the transport of air masses between the troposphere and the stratosphere. We consider not only the tropopause itself, but also a layer around it called the tropopause inversion layer (TIL). It is shown that the moister the underlying atmosphere is, the more this layer acts as a barrier.
Mark Zelinka, Li-Wei Chao, Timothy Myers, Yi Qin, and Stephen Klein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2782, https://doi.org/10.5194/egusphere-2024-2782, 2024
Short summary
Short summary
Clouds lie at the heart of uncertainty in both climate sensitivity and radiative forcing, making it imperative to properly diagnose their radiative effects. Here we provide a recommended methodology and code base for the community to use in performing such diagnoses using cloud radiative kernels. We show that properly accounting for changes in obscuration of lower-level clouds by upper-level is important for accurate diagnosis and attribution of cloud feedbacks and adjustments.
Tómas Zoëga, Trude Storelvmo, and Kirstin Krüger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2651, https://doi.org/10.5194/egusphere-2024-2651, 2024
Short summary
Short summary
We use an Earth system model to systematically investigate the climate response to high-latitude, effusive volcanic eruptions as a function of eruption season and size with a special focus on the Arctic. We find that different seasons strongly modulate the climate response with Arctic surface warming in winter and cooling in summer. Also, as eruptions become larger in terms of sulfur dioxide emissions, the climate response becomes increasingly insensitive to variations in the emission strength.
Michael Stanley, Mikael Kuusela, Brendan Byrne, and Junjie Liu
Atmos. Chem. Phys., 24, 9419–9433, https://doi.org/10.5194/acp-24-9419-2024, https://doi.org/10.5194/acp-24-9419-2024, 2024
Short summary
Short summary
To serve the uncertainty quantification (UQ) needs of 4D-Var data assimilation (DA) practitioners, we describe and justify a UQ algorithm from carbon flux inversion and incorporate its sampling uncertainty into the final reported UQ. The algorithm is mathematically proved, and its performance is shown for a carbon flux observing system simulation experiment. These results legitimize and generalize this algorithm's current use and make available this effective algorithm to new DA domains.
Dharmendra Kumar Singh, Swarnali Sanyal, and Donald J. Wuebbles
Atmos. Chem. Phys., 24, 9219–9262, https://doi.org/10.5194/acp-24-9219-2024, https://doi.org/10.5194/acp-24-9219-2024, 2024
Short summary
Short summary
Radiative forcing of contrails could triple by 2050 due to increased air traffic and potential changes in flight altitudes. Factors like air traffic patterns, fuel efficiency, alternative fuels, and climate change further influence this impact. By highlighting gaps in knowledge and uncertainties, this research helps set priorities for future studies and assess strategies to mitigate the environmental impact of aviation emissions.
Dieu Anh Tran, Christoph Gerbig, Christian Rödenbeck, and Sönke Zaehle
Atmos. Chem. Phys., 24, 8413–8440, https://doi.org/10.5194/acp-24-8413-2024, https://doi.org/10.5194/acp-24-8413-2024, 2024
Short summary
Short summary
The analysis of the atmospheric CO2 record from the Zotino Tall Tower Observatory (ZOTTO) in central Siberia shows significant increases in the length and amplitude of the CO2 uptake and release in the 2010–2021 period. The trend shows a stronger increase in carbon release amplitude compared to the uptake, suggesting that, despite enhanced growing season uptake, during this period climate warming did not elevate the annual net CO2 uptake as cold-season respirations also responded to the warming.
Olaf Morgenstern
Atmos. Chem. Phys., 24, 8105–8123, https://doi.org/10.5194/acp-24-8105-2024, https://doi.org/10.5194/acp-24-8105-2024, 2024
Short summary
Short summary
I use errors in climate model simulations to derive correction factors for the impacts of greenhouse gases and particles that bring these simulated temperature fields into agreement with an observational reconstruction of the Earth's temperature. On average across eight models, a reduction by about one-half of the particle-induced cooling would be required, causing only 0.24 K of cooling since 1850–1899. The greenhouse gas warming simulated by several highly sensitive models would also reduce.
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1879, https://doi.org/10.5194/egusphere-2024-1879, 2024
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation, and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role for cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles are constrained by Arctic observations.
Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, and Xiaolong Chen
Atmos. Chem. Phys., 24, 7347–7358, https://doi.org/10.5194/acp-24-7347-2024, https://doi.org/10.5194/acp-24-7347-2024, 2024
Short summary
Short summary
Two sets of climate model simulations are used to investigate the dynamic and thermodynamic factors of future change in cold extremes in East Asia. Dynamic factor accounted for over 80 % of cold-month temperature anomalies in past 50 years. The intensity of cold extreme is expected to decrease by 5 ℃, with thermodynamic factor contributing ~ 75 % by the end of the 21st century. Changes in dynamic factor are driven by an upward trend of positive Arctic Oscillation-like sea level pressure pattern.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Flora Maria Brocza, Peter Rafaj, Robert Sander, Fabian Wagner, and Jenny Marie Jones
Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024, https://doi.org/10.5194/acp-24-7385-2024, 2024
Short summary
Short summary
To understand how atmospheric mercury levels will change in the future, we model how anthropogenic Hg releases will change following developments in human energy use and mercury use and efforts to reduce pollution and battle climate change. Overall, the findings emphasize that it will be necessary to implement targeted Hg control measures in addition to stringent climate and clean air policies to achieve significant reductions in Hg emissions.
Zhen Liu, Massimo A. Bollasina, and Laura J. Wilcox
Atmos. Chem. Phys., 24, 7227–7252, https://doi.org/10.5194/acp-24-7227-2024, https://doi.org/10.5194/acp-24-7227-2024, 2024
Short summary
Short summary
The aerosol impact on monsoon precipitation and circulation is strongly influenced by a model-simulated spatio-temporal variability in the climatological monsoon precipitation across Asia, which critically modulates the efficacy of aerosol–cloud–precipitation interactions, the predominant driver of the total aerosol response. There is a strong interplay between South Asia and East Asia monsoon precipitation biases and their relative predominance in driving the overall monsoon response.
Sarah E. Hancock, Daniel Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1763, https://doi.org/10.5194/egusphere-2024-1763, 2024
Short summary
Short summary
We quantify 2021 methane emissions in South America at up to 25 km × 25 km resolution using satellite methane observations. We find a 55 % upward correction to the national anthropogenic inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC) under the Paris Agreement. Our estimates match inventories for Brazil, Bolivia, and Paraguay but are much higher for other countries. Livestock emissions (65 % of anthropogenic emissions) show the largest discrepancies.
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024, https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary
Short summary
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Brian Nathan, Joannes D. Maasakkers, Stijn Naus, Ritesh Gautam, Mark Omara, Daniel J. Varon, Melissa P. Sulprizio, Lucas A. Estrada, Alba Lorente, Tobias Borsdorff, Robert J. Parker, and Ilse Aben
Atmos. Chem. Phys., 24, 6845–6863, https://doi.org/10.5194/acp-24-6845-2024, https://doi.org/10.5194/acp-24-6845-2024, 2024
Short summary
Short summary
Venezuela's Lake Maracaibo region is notoriously hard to observe from space and features intensive oil exploitation, although production has strongly decreased in recent years. We estimate methane emissions using 2018–2020 TROPOMI satellite observations with national and regional transport models. Despite the production decrease, we find relatively constant emissions from Lake Maracaibo between 2018 and 2020, indicating that there could be large emissions from abandoned infrastructure.
James P. Williams, Mark Omara, Anthony Himmelberger, Daniel Zavala-Araiza, Katlyn MacKay, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2024-1402, https://doi.org/10.5194/egusphere-2024-1402, 2024
Short summary
Short summary
We utilize peer-reviewed facility-level oil and gas methane emission rate data gathered in prior work to estimate the relative contributions of methane sources emitting at different emission rates in the United States. We find that the majority of total methane emissions in the US oil and gas sector stem from a large number of small sources emitting in aggregate, corroborating findings from several other studies.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Kalle Nordling, Nora Fahrenbach, and Bjørn Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1068, https://doi.org/10.5194/egusphere-2024-1068, 2024
Short summary
Short summary
People experience daily weather, not changes in monthly averages. We investigate how the likelihood of events, which occurred once every ten years in the pre-industrial era. We analyze how summertime precipitation and daily maximum temperature events evolve. Our focus is on understanding the role of day-to-day variability in the change in the number of extreme weather days. We find that in most regions, a change in variability is the primary driver for change in summertime extreme precipitation.
Jiachen Cao, Xu Yue, and Mingrui Ma
Atmos. Chem. Phys., 24, 3973–3987, https://doi.org/10.5194/acp-24-3973-2024, https://doi.org/10.5194/acp-24-3973-2024, 2024
Short summary
Short summary
We implemented two widely used ozone damage schemes into a same regional model. Although the two schemes yielded distinct ozone vegetation damages, they predicted similar feedbacks to surface air temperature and ozone air quality in China. Our results highlighted the significance of ozone pollution control given its detrimental impacts on ecosystem functions, contributions to global warming, and amplifications of ozone pollution through ozone–vegetation coupling.
Steven C. Sherwood and Chris E. Forest
Atmos. Chem. Phys., 24, 2679–2686, https://doi.org/10.5194/acp-24-2679-2024, https://doi.org/10.5194/acp-24-2679-2024, 2024
Short summary
Short summary
The most fundamental parameter used to gauge the severity of future climate change is the so-called equilibrium climate sensitivity, which measures the warming that would ultimately occur due to a doubling of atmospheric carbon dioxide levels. Due to recent advances it is now thought to probably lie in the range 2.5–4 °C. We discuss this and the issues involved in evaluating and using the number, pointing to some pitfalls in current efforts but also possibilities for further progress.
Christopher D. Wells, Matthew Kasoar, Majid Ezzati, and Apostolos Voulgarakis
Atmos. Chem. Phys., 24, 1025–1039, https://doi.org/10.5194/acp-24-1025-2024, https://doi.org/10.5194/acp-24-1025-2024, 2024
Short summary
Short summary
Human-driven emissions of air pollutants, mostly caused by burning fossil fuels, impact both the climate and human health. Millions of deaths each year are caused by air pollution globally, and the future trends are uncertain. Here, we use a global climate model to study the effect of African pollutant emissions on surface level air pollution, and resultant impacts on human health, in several future emission scenarios. We find much lower health impacts under cleaner, lower-emission futures.
Xipeng Jin, Xuhui Cai, Xuesong Wang, Qianqian Huang, Yu Song, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 24, 259–274, https://doi.org/10.5194/acp-24-259-2024, https://doi.org/10.5194/acp-24-259-2024, 2024
Short summary
Short summary
This work presents a climatology of water vapour exchange flux between the atmospheric boundary layer (ABL) and free troposphere (FT) over eastern China. The water vapour exchange maintains ABL humidity in cold months and moistens the FT in warm seasons, and its distribution has terrain-dependent features. The exchange flux is correlated with the El Niño–Southern Oscillation (ENSO) index and precipitation pattern. The study provides new insight into moisture transport and extreme weather.
Clare Marie Flynn, Linnea Huusko, Angshuman Modak, and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 15121–15133, https://doi.org/10.5194/acp-23-15121-2023, https://doi.org/10.5194/acp-23-15121-2023, 2023
Short summary
Short summary
The latest-generation climate models show surprisingly cold mid-20th century global-mean temperatures, often despite exhibiting more realistic late 20th/early 21st century temperatures. A too-strong aerosol forcing in many models was thought to the be primary cause of these too-cold mid-century temperatures, but this was found to only be a partial explanation. This also partly undermines the hope to construct a strong relationship between the mid-century temperatures and aerosol forcing.
Suvarna Fadnavis, Bernd Heinold, T. P. Sabin, Anne Kubin, Katty Huang, Alexandru Rap, and Rolf Müller
Atmos. Chem. Phys., 23, 10439–10449, https://doi.org/10.5194/acp-23-10439-2023, https://doi.org/10.5194/acp-23-10439-2023, 2023
Short summary
Short summary
The influence of the COVID-19 lockdown on the Himalayas caused increases in snow cover and a decrease in runoff, ultimately leading to an enhanced snow water equivalent. Our findings highlight that, out of the two processes causing a retreat of Himalayan glaciers – (1) slow response to global climate change and (2) fast response to local air pollution – a policy action on the latter is more likely to be within the reach of possible policy action to help billions of people in southern Asia.
Amelie U. Schmitt, Felix Ament, Alessandro C. de Araújo, Marta Sá, and Paulo Teixeira
Atmos. Chem. Phys., 23, 9323–9346, https://doi.org/10.5194/acp-23-9323-2023, https://doi.org/10.5194/acp-23-9323-2023, 2023
Short summary
Short summary
Tall vegetation in forests affects the exchange of heat and moisture between the atmosphere and the land surface. We compared measurements from the Amazon Tall Tower Observatory to results from a land surface model to identify model shortcomings. Our results suggest that soil temperatures in the model could be improved by incorporating a separate canopy layer which represents the heat storage within the forest.
Cited articles
Ayantobo, O. O., Wei, J., Hou, M., Xu, J., and Wang, G.: Characterizing potential sources and transport pathways of intense moisture during extreme precipitation events over the Tibetan Plateau, J. Hydrol., 615, 128734, https://doi.org/10.1016/j.jhydrol.2022.128734, 2022.
Chen, B., Xu, X. D., Yang, S., and Zhang, W.: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau, Theor. Appl. Climatol., 110, 423–435, https://doi.org/10.1007/s00704-012-0641-y, 2012.
Chen, B., Zhang, W., Yang, S., and Xu, X. D.: Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season, Clim. Dynam., 53, 6891–6907, https://doi.org/10.1007/s00382-019-04963-2, 2019.
Chen, Y., Liu, B., Cai, X., Zhou, T., and He, Q.: Moisture transport and sources of an extreme rainfall event of June 2021 in southern Xinjiang, China, Adv. Clim. Change Res., 13, 843–850, https://doi.org/10.1016/j.accre.2022.11.010, 2022.
Cloux, S., Garaboa-Paz, D., Insua-Costa, D., Miguez-Macho, G., and Pérez-Muñuzuri, V.: Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification, Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, 2021.
Curio, J. and Scherer, D.: Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau, Earth Syst. Dynam., 7, 767–782, https://doi.org/10.5194/esd-7-767-2016, 2016.
Dahinden, F., Aemisegger, F., Wernli, H., and Pfahl, S.: Unravelling the transport of moisture into the Saharan Air Layer using passive tracers and isotopes, Atmos. Sci. Lett., 24, e1187, https://doi.org/10.1002/asl.1187, 2023.
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial sources of continental precipitation, Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389, 2012.
Gimeno, L., Vazquez, M., Eiras-Barca, J., Sori, R., Stojanovic, M., Algarra, I., Nieto, R., Ramos, A. M., Duran-Quesada, A. M., and Dominguez, F.: Recent progress on the sources of continental precipitation as revealed by moisture transport analysis, Earth-Sci. Rev., 201, 103070, https://doi.org/10.1016/j.earscirev.2019.103070, 2020.
Guo, L., van der Ent, R. J., Klingaman, N. P., Demory, M.-E., Vidale, P. L., Turner, A. G., Stephan, C. C., and Chevuturi, A.: Moisture Sources for East Asian Precipitation: Mean Seasonal Cycle and Interannual Variability, J. Hydrometeorol., 20, 657–672, https://doi.org/10.1175/JHM-D-18-0188.1, 2019.
Guo, L., van der Ent, R. J., Klingaman, N. P., Demory, M.-E., Vidale, P. L., Turner, A. G., Stephan, C. C., and Chevuturi, A.: Effects of horizontal resolution and air–sea coupling on simulated moisture source for East Asian precipitation in MetUM GA6/GC2, Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hu, Q., Zhao, Y., Huang, A., Ma, P., and Ming, J.: Moisture Transport and Sources of the Extreme Precipitation Over Northern and Southern Xinjiang in the Summer Half-Year During 1979–2018, Front. Earth Sci., 9, 770877, https://doi.org/10.3389/feart.2021.770877, 2021.
Huang, W., Qiu, T., Yang, Z., Lin, D., Wright, J. S., Wang, B., and He, X.: On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau, J. Geophys. Res.-Atmos., 123, 12692–12714, https://doi.org/10.1029/2018JD028921, 2018.
Keune, J., Schumacher, D. L., and Miralles, D. G.: A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models, Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022, 2022.
Li, Y., Su, F., Chen, D., and Tang, Q.: Atmospheric Water Transport to the Endorheic Tibetan Plateau and Its Effect on the Hydrological Status in the Region, J. Geophys. Res.-Atmos., 124, 12864–12881, https://doi.org/10.1029/2019jd031297, 2019.
Li, Y., Su, F., Tang, Q., Gao, H., Yan, D., Peng, H., and Xiao, S.: Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau, Sci. China Earth Sci., 65, 1088, https://doi.org/10.1007/s11430-021-9890-6, 2022a.
Li, Y., Wang, C., Huang, R., Yan, D., Peng, H., and Xiao, S.: Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau, Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, 2022b.
Li, Y.: Data and scripts for “Unraveling the discrepancies between Eulerian and Lagrangian moisture tracking models in monsoon- and westerly-dominated basins of the Tibetan Plateau”, Zenodo [code] and [data set], https://doi.org/10.5281/zenodo.12780143, 2024.
Liu, R., Wen, J., Wang, X., Wang, Z., and Liu, Y.: Case studies of atmospheric moisture sources in the source region of the Yellow River from a Lagrangian perspective, Int. J. Climatol., 42, 1516–1530, https://doi.org/10.1002/joc.7317, 2021.
Liu, R., Wang, X., and Wang, Z.: Atmospheric moisture sources of drought and wet events during 1979–2019 in the Three-River Source Region, Qinghai-Tibetan Plateau, Theor. Appl. Climatol., 149, 487–499, https://doi.org/10.1007/s00704-022-04058-9, 2022.
Liu, X., Liu, Y., Wang, X., and Wu, G.: Large-Scale Dynamics and Moisture Sources of the Precipitation Over the Western Tibetan Plateau in Boreal Winter, J. Geophys. Res.-Atmos., 125, e2019JD032133, https://doi.org/10.1029/2019JD032133, 2020.
Liu, Y., Lu, M., Yang, H., Duan, A., He, B., Yang, S., and Wu, G.: Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts, Natl. Sci. Rev., 7, 534–552, https://doi.org/10.1093/nsr/nwaa011, 2020.
Ma, Y., Lu, M., Bracken, C., and Chen, H.: Spatially coherent clusters of summer precipitation extremes in the Tibetan Plateau: Where is the moisture from?, Atmos. Res., 237, 104841, https://doi.org/10.1016/j.atmosres.2020.104841, 2020.
Pan, C., Zhu, B., Gao, J., Kang, H., and Zhu, T.: Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport, Clim. Dynam., 52, 181–196, https://doi.org/10.1007/s00382-018-4130-6, 2018.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Qiu, T., Huang, W., Wright, J. S., Lin, Y., Lu, P., He, X., Yang, Z., Dong, W., Lu, H., and Wang, B.: Moisture Sources for Wintertime Intense Precipitation Events Over the Three Snowy Subregions of the Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 12708–12725, https://doi.org/10.1029/2019jd031110, 2019.
Shao, L., Tian, L., Cai, Z., Wang, C., and Li, Y.: Large-scale atmospheric circulation influences the ice core d-excess record from the central Tibetan Plateau, Clim. Dynam., 57, 1805–1816, https://doi.org/10.1007/s00382-021-05779-9, 2021.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, J. Geophys. Res.-Atmos., 113, D03107, https://doi.org/10.1029/2007JD008503, 2008.
Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2078, https://doi.org/10.1175/BAMS-D-14-00110.1, 2016.
Sun, B. and Wang, H.: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART, J. Climate, 27, 2457–2474, https://doi.org/10.1175/JCLI-D-13-00517.1, 2014.
Tipka, A., Haimberger, L., and Seibert, P.: Flex_extract v7.1.2 – a software package to retrieve and prepare ECMWF data for use in FLEXPART, Geosci. Model Dev., 13, 5277–5310, https://doi.org/10.5194/gmd-13-5277-2020, 2020.
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020.
van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013.
van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
van der Ent, R. J., Benedict, I. B., Weijenborg, C., Cömert, T., van de Koppel, N., Guo, L., de Feiter, V., and Kalverla, P.: WAM2layers (Version v3.0.0-beta.5), GitHub [code], https://github.com/WAM2layers/WAM2layers, (last access: 14 September 2024), 2023.
Wang, L., Liu, W., Xu, Z., and Zhang, J.: Water sources and recharge mechanisms of the Yarlung Zangbo River in the Tibetan Plateau: Constraints from hydrogen and oxygen stable isotopes, J. Hydrol., 614, 128585, https://doi.org/10.1016/j.jhydrol.2022.128585, 2022.
Wang, Y., Yang, K., Huang, W., Qiu, T., and Wang, B.: Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau, Remote Sens.-Basel, 15, 735, https://doi.org/10.3390/rs15030735, 2023.
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Comparison of Eulerian and Lagrangian moisture source diagnostics – the flood event in eastern Europe in May 2010, Atmos. Chem. Phys., 14, 6605–6619, https://doi.org/10.5194/acp-14-6605-2014, 2014.
Xu, Y. and Gao, Y.: Quantification of Evaporative Sources of Precipitation and Its Changes in the Southeastern Tibetan Plateau and Middle Yangtze River Basin, Atmosphere, 10, 428, https://doi.org/10.3390/atmos10080428, 2019.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review, Global Planet. Change, 112, 79–91, https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yang, S., Zhang, W., Chen, B., Xu, X., and Zhao, R.: Remote moisture sources for 6 h summer precipitation over the Southeastern Tibetan Plateau and its effects on precipitation intensity, Atmos. Res., 236, 104803, https://doi.org/10.1016/j.atmosres.2019.104803, 2020.
Yao, S., Jiang, D., and Zhang, Z.: Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979–2018, Int. J. Climatol., 41, E216–E232, https://doi.org/10.1002/joc.6679, 2020.
Yao, S., Jiang, D., and Zhang, Z.: Moisture Sources of Heavy Precipitation in Xinjiang Characterized by Meteorological Patterns, J. Hydrometeorol., 22, 2213–2225, https://doi.org/10.1175/JHM-D-20-0236.1, 2021.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., and He, Y.: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525–548, https://doi.org/10.1002/rog.20023, 2013.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau, W. K.-M., Lettenmaier, D., and Mosbrugger, V.: Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis, B. Am. Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2018.
Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G., and Zhao, P.: The imbalance of the Asian water tower, Nature Reviews Earth & Environment, 3, 618–632, https://doi.org/10.1038/s43017-022-00299-4, 2022.
ZAMG: Flexpart, Welcome to the official FLEXPART web site, ZAMG, https://www.flexpart.eu/ (last access: 14 September 2024), 2024.
Zhang, C.: Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM, Environ. Res. Lett., 15, 104003, https://doi.org/10.1088/1748-9326/abac78, 2020.
Zhang, C., Tang, Q., and Chen, D.: Recent changes in the moisture source of precipitation over the Tibetan Plateau, J. Climate, 30, 1807–1819, https://doi.org/10.1175/JCLI-D-15-0842.1, 2017.
Zhang, C., Tang, Q. H., Chen, D. L., van der Ent, R. J., Liu, X. C., Li, W. H., and Haile, G. G.: Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau, J. Hydrometeorol., 20, 217–229, https://doi.org/10.1175/Jhm-D-18-0094.1, 2019.
Zhang, C., Chen, D., Tang, Q., and Huang, J.: Fate and Changes in Moisture Evaporated From the Tibetan Plateau (2000–2020), Water Resour. Res., 59, e2022WR034165, https://doi.org/10.1029/2022WR034165, 2023.
Zhang, C., Zhang, X., Tang, Q., Chen, D., Huang, J., Wu, S., and Liu, Y.: Quantifying precipitation moisture contributed by different atmospheric circulations across the Tibetan Plateau, J. Hydrol., 628, 130517, https://doi.org/10.1016/j.jhydrol.2023.130517, 2024.
Zhang, Q., Shen, Z., Pokhrel, Y., Farinotti, D., Singh, V. P., Xu, C., Wu, W., and Wang, G.: Oceanic climate changes threaten the sustainability of Asia's water tower, Nature, 615, 87–93, https://doi.org/10.1038/s41586-022-05643-8, 2023.
Zhang, Y., Huang, W., and Zhong, D.: Major Moisture Pathways and Their Importance to Rainy Season Precipitation over the Sanjiangyuan Region of the Tibetan Plateau, J. Climate, 32, 6837–6857, https://doi.org/10.1175/jcli-d-19-0196.1, 2019.
Zhao, R., Chen, B., and Xu, X.: Intensified Moisture Sources of Heavy Precipitation Events Contributed to Interannual Trend in Precipitation Over the Three-Rivers-Headwater Region in China, Front. Earth Sci., 9, 674037, https://doi.org/10.3389/feart.2021.674037, 2021.
Zhao, R., Chen, B., Zhang, W., Yang, S., and Xu, X.: Moisture source anomalies connected to flood-drought changes over the three-rivers headwater region of Tibetan Plateau, Int. J. Climatol., 43, 5303–5316, https://doi.org/10.1002/joc.8147, 2023.
Zhou, Y., Xie, Z., and Liu, X.: An Analysis of Moisture Sources of Torrential Rainfall Events over Xinjiang, China, J. Hydrometeorol., 20, 2109–2122, https://doi.org/10.1175/JHM-D-19-0010.1, 2019.
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing...
Altmetrics
Final-revised paper
Preprint