Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-7887-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7887-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA
now at: University of Chicago Laboratory Schools, Chicago, IL, USA
Matthew M. Coggon
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Christopher Y. Lim
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA
now at: South Coast Air Quality Management District, Diamond Bar, CA, USA
Abigail R. Koss
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
now at: Tofwerk A.G., Boulder, CO, USA
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
now at: Institute for Environmental and Climate Research, Jinan
University, Guangzhou, China
Jordan E. Krechmer
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
now at: Bruker Scientific, Inc., Billerica, MA, USA
Kanako Sekimoto
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Graduate School of Nanobioscience, Yokohama City University,
Yokohama, Kanagawa, Japan
Jose L. Jimenez
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
Joost de Gouw
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
Christopher D. Cappa
Department of Civil and Environmental Engineering, University of
California, Davis, CA, USA
Colette L. Heald
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA
Department of Earth, Atmospheric and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, USA
Carsten Warneke
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA
Department of Chemical Engineering, Massachusetts Institute of
Technology, Cambridge, MA, USA
Data sets
FIREX FireLab 2016 Data NOAA Chemical Sciences Laboratory https://csl.noaa.gov/groups/csl7/measurements/2016firex/FireLab/DataDownload/
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
In this work, we collect emissions from controlled burns of biomass fuels that can be found in...
Altmetrics
Final-revised paper
Preprint