Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Department of Earth Sciences, National Taiwan Normal University,
Taipei 11677, Taiwan
Ting-Yu Yeh
Department of Earth Sciences, National Taiwan Normal University,
Taipei 11677, Taiwan
Chih-Sheng Chang
Department of Earth Sciences, National Taiwan Normal University,
Taipei 11677, Taiwan
Ming-Siang Li
Department of Earth Sciences, National Taiwan Normal University,
Taipei 11677, Taiwan
Kazuhisa Tsuboki
Institute for Space–Earth Environmental Research, Nagoya University,
Nagoya 464-8601, Japan
Ching-Hwang Liu
Department of Atmospheric Sciences, Chinese Culture University,
Taipei 11114, Taiwan
Related authors
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-192, https://doi.org/10.5194/nhess-2023-192, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
CReSS well predict the rainfall fields at the short-range forecast (less than 3 days) for 10 December. These good results are due to the model having good predicts of other meteorological variables, such as surface wind fields. These prediction skills are reducing at lead time longer than 3 days. The 24-hour rainfall is very sensitive with initial conditions, not only at the lower level but also at the upper level. The ensemble-based sensitivity is decreased with the increasing lead time.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016, https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary
Short summary
In this study, the back-building process of a quasistationary convective line with extreme rainfall is investigated using a cloud model. At the initiation stage of new cells, thermodynamic processes of near-surface latent heating coupled with adiabatic cooling above along the convergence line, rather than dynamic pressure perturbations, are found to be important. The stronger uplift and cooling aloft provided by old cells made their upstream areas more favorable for new cell development.
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016, https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary
Short summary
An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in south-eastern South Korea was investigated using observational data. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment and the behaviour of the MCS causing natural hazards over South Korea.
C.-C. Wang, H.-C. Kuo, R. H. Johnson, C.-Y. Lee, S.-Y. Huang, and Y.-H. Chen
Atmos. Chem. Phys., 15, 11097–11115, https://doi.org/10.5194/acp-15-11097-2015, https://doi.org/10.5194/acp-15-11097-2015, 2015
Hung-Chi Kuo, Ting-Shuo Yo, Hungjui Yu, Shih-Hao Su, Ching-Hwang Liu, and Po-Hsiung Lin
EGUsphere, https://doi.org/10.5194/egusphere-2024-661, https://doi.org/10.5194/egusphere-2024-661, 2024
Preprint archived
Short summary
Short summary
The study introduces "Storm Tracker," a budget-friendly device for weather observation. It highlights the calibration and testing against more expensive devices, ensuring its accuracy for temperature and humidity. This innovation could improve weather forecasting by making detailed atmospheric data more accessible, especially in challenging regions. Through rigorous comparison and enhancement, "Storm Tracker" promises to improve disaster preparedness and understanding of local weather patterns.
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-192, https://doi.org/10.5194/nhess-2023-192, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
CReSS well predict the rainfall fields at the short-range forecast (less than 3 days) for 10 December. These good results are due to the model having good predicts of other meteorological variables, such as surface wind fields. These prediction skills are reducing at lead time longer than 3 days. The 24-hour rainfall is very sensitive with initial conditions, not only at the lower level but also at the upper level. The ensemble-based sensitivity is decreased with the increasing lead time.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016, https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary
Short summary
In this study, the back-building process of a quasistationary convective line with extreme rainfall is investigated using a cloud model. At the initiation stage of new cells, thermodynamic processes of near-surface latent heating coupled with adiabatic cooling above along the convergence line, rather than dynamic pressure perturbations, are found to be important. The stronger uplift and cooling aloft provided by old cells made their upstream areas more favorable for new cell development.
Jong-Hoon Jeong, Dong-In Lee, Chung-Chieh Wang, and In-Seong Han
Nat. Hazards Earth Syst. Sci., 16, 927–939, https://doi.org/10.5194/nhess-16-927-2016, https://doi.org/10.5194/nhess-16-927-2016, 2016
Short summary
Short summary
An extreme rainfall-producing mesoscale convective system (MCS) associated with the Changma front in south-eastern South Korea was investigated using observational data. The aim of the present study is to analyze and better understand the synoptic and mesoscale environment and the behaviour of the MCS causing natural hazards over South Korea.
C.-C. Wang, H.-C. Kuo, R. H. Johnson, C.-Y. Lee, S.-Y. Huang, and Y.-H. Chen
Atmos. Chem. Phys., 15, 11097–11115, https://doi.org/10.5194/acp-15-11097-2015, https://doi.org/10.5194/acp-15-11097-2015, 2015
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Technical note: Phase space depiction of CCN activation and cloud droplet diffusional growth
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Can pollen affect precipitation?
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
On the impact of thunder on cloud ice crystals and droplets
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud-droplet number concentration
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
Counteracting Influences of Gravitational Settling Modulate Aerosol Impacts on Cloud Base Lowering Fog Characteristics
Numerical Case Study of the Aerosol-Cloud-Interactions in Warm Boundary Layer Clouds over the Eastern North Atlantic with an Interactive Chemistry Module
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Arctic Multilayer Clouds Require Accurate Thermodynamic Profiles and Efficient Primary and Secondary Ice Processes for a Realistic Structure and Composition
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Influence of Temperature and Humidity on Contrail Formation Regions in EMAC: A Spring Case Study
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
Constraining Aerosol-Cloud Adjustments by Uniting Surface Observations with a Perturbed Parameter Ensemble
The Critical Number and Size of Precipitation Embryos to Accelerate Warm Rain Initiation
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Impact on the stratocumulus-to-cumulus transition of the interaction of cloud microphysics and macrophysics with large-scale circulation
How the representation of microphysical processes affects tropical condensate in a global storm-resolving model
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Impact of wildfire smoke on Arctic cirrus formation, part 2: simulation of MOSAiC 2019−2020 cases
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025, https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025, https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat–CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025, https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
Wojciech W. Grabowski and Hanna Pawlowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-4104, https://doi.org/10.5194/egusphere-2024-4104, 2025
Short summary
Short summary
A simple diagram to depict cloud droplets formation via activation of cloud condensation nuclei (CCN) as well as their subsequent growth and evaporation is presented.
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, Sang-Keun Song, and Kyung-Ja Ha
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025, https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Short summary
This study attempts to test a general factor that explains differences in the properties of different mixed-phase clouds using a modeling tool. Although this attempt is not to identify a factor that can perfectly explain and represent the properties of different mixed-phase clouds, we believe that this attempt acts as a valuable stepping stone towards a more complete, general way of using climate models to better predict climate change.
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025, https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025, https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024, https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation.
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024, https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3891, https://doi.org/10.5194/egusphere-2024-3891, 2024
Short summary
Short summary
Injecting sea salt aerosols into marine stratiform clouds can distribute the cloud water over more droplets in smaller sizes. This process is expected to make the clouds brighter, allowing them to reflect more sunlight back to space. However, it may also cause the clouds to lose water over time, reducing their ability to reflect sunlight. We use a computer model to show that the loss of cloud water occurs relatively quickly and does not completely offset the initial brightening.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3314, https://doi.org/10.5194/egusphere-2024-3314, 2024
Short summary
Short summary
The loud sound of thunder will induce mechanical effects on cloud droplets and ice particles, causing changes in their size distribution.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
EGUsphere, https://doi.org/10.5194/egusphere-2024-3501, https://doi.org/10.5194/egusphere-2024-3501, 2024
Short summary
Short summary
Shallow clouds in the trades are a major source of uncertainty in climate projections. These clouds organize into striking mesoscale patterns that are exactly what climate models lack. This study explores the origin of such patterns and investigates how variations in microscale properties control them. The importance of microscale effects is compared to that of large-scale forcing on the mesoscale organization of trade-cumulus fields.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Nathan H. Pope and Adele L. Igel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3214, https://doi.org/10.5194/egusphere-2024-3214, 2024
Short summary
Short summary
We used PAFOG, an atmospheric model that simulates a single column, to study the sensitivity of marine fog formed through the lowering of the base of a stratus cloud to meteorology and aerosols. We found that higher aerosol concentration reduces the likelihood and duration of fog, but leads to denser fog. This overall trend was caused by multiple physical mechanisms depending on conditions.
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3199, https://doi.org/10.5194/egusphere-2024-3199, 2024
Short summary
Short summary
The study investigates how aerosol-cloud interactions affect warm boundary layer stratiform clouds over the Eastern North Atlantic. High-resolution WRF-Chem simulations reveal that non-rain clouds at the edges of cloud systems are prone to evaporation, leading to an aerosol drying effect and a transition of aerosols back to accumulation mode for future activation. The study emphasizes that this dynamic behavior is often not adequately represented in most previous prescribed-aerosol simulations.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2024-2988, https://doi.org/10.5194/egusphere-2024-2988, 2024
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain understudied. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature and humidity profiles. The model also struggles to capture the observed cloud phase, the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2142, https://doi.org/10.5194/egusphere-2024-2142, 2024
Short summary
Short summary
Our study examines how temperature and humidity representations influence contrail (-cirrus) formation criteria. Using various model setups, we identified biases that lead to overestimation of contrail formation areas. By comparing simulations with in-flight and satellite observations, we confirmed that humidity threshold choices greatly affect contrail predictions. These findings can help develop strategies for climate-optimized flight routes, potentially reducing aviation's climate effect.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2157, https://doi.org/10.5194/egusphere-2024-2157, 2024
Short summary
Short summary
We investigate ice formation pathways in idealized convective clouds using a novel microphysics scheme, that distinguishes between five ice classes each with their unique formation mechanism. Ice crystals from rime splintering forms the lowermost layer of ice crystals around the updraft core. The majority of ice crystals in the anvil of the convective cloud stems from frozen droplets. Ice stemming from homogeneous and deposition nucleation was only relevant in the overshoot.
August Mikkelsen, Daniel T. McCoy, Trude Eidhammer, Andrew Gettelman, Ci Song, Hamish Gordon, and Isabel L. McCoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2158, https://doi.org/10.5194/egusphere-2024-2158, 2024
Short summary
Short summary
The largest uncertainty in inferring the magnitude of future warming comes from ambiguity in the strength of cooling in the historical record from aerosols. Aerosols are small liquid and solid particles that are important for cloud formation. The interactions between aerosols and clouds are complex and difficult to observe. In this study, we use surface observations of cloud and precipitation properties to constrain a climate model and interpret causality in complex aerosol-cloud interactions.
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2636, https://doi.org/10.5194/egusphere-2024-2636, 2024
Short summary
Short summary
The onset of rain is not fully understood. In this study, we address the impact of comparably large particles (precipitation embryos), speculated to initiate rain in clouds that do not contain ice. We showed that these particles can accelerate rain initiation only if their size and number exceed a threshold. As this threshold depends on the cloud's micro- and macrostructure, the impact of large particles on rain initiation is situation-dependent.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Je-Yun Chun, Robert Wood, Peter N. Blossey, and Sarah J. Doherty
EGUsphere, https://doi.org/10.5194/egusphere-2024-2439, https://doi.org/10.5194/egusphere-2024-2439, 2024
Short summary
Short summary
This study explores how aerosols affect clouds transitioning from stratocumulus to cumulus along trade winds under varying atmospheric conditions. We found that aerosols typically reduce precipitation and raise cloud height, but their impact changes when subsidence changes by aerosol enhancement are considered. Our findings indicate that the cooling effect of aerosols might be overestimated if these atmospheric changes are not accounted for.
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2268, https://doi.org/10.5194/egusphere-2024-2268, 2024
Short summary
Short summary
This study explores how uncertainties in the representation of microphysical processes affect the tropical condensate distribution in the global storm-resolving model ICON. The results point to the importance of the fall speed of hydrometeor particles and to a simple relationship: the faster a condensate falls, the less there is of it. Implications for the energy balance and precipitation properties are discussed.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2009, https://doi.org/10.5194/egusphere-2024-2009, 2024
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. Aerosol and cirrus observations with lidar and radar during the MOSAiC expedition, presented in part 1 (egusphere-2024-2008) are closely linked to comprehensive modeling of ice nucleation in cirrus evolution processes, presented in this part 2 (egusphere-2024-2009). A clear impact of wildfire smoke on cirrus formation was found.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Cited articles
Akaeda, K., Reisner, J., and Parsons, D.: The role of mesoscale and
topographically induced circulations initiating a flash flood observed
during the TAMEX project, Mon. Weather Rev., 123, 1720–1739, 1995.
Ancell, B. and Hakim, G. J.: Comparing adjoint- and ensemble-sensitivity
analysis with applications to observation targeting, Mon. Weather Rev., 135,
4117–4134, 2007.
Banta, R. M.: The Role of Mountain Flows in Making Clouds, in: Atmospheric
Processes over Complex Terrain, edited by: Blumen, W., Meteorological
Monographs, 23, Boston, Massachusetts, US, Am. Meteorol. Soc., 229–284,
https://doi.org/10.1007/978-1-935704-25-6_9, 1990.
Bednarczyk, C. N. and Ancell, B. C.: Ensemble sensitivity analysis applied
to a southern plains convective event, Mon. Weather Rev., 143, 230–249,
2015.
Chen, G. T.-J.: Mesoscale features observed in Taiwan Mei-Yu season, J.
Meteor. Soc. Jpn., 70, 497–516, 1992.
Chen, G. T.-J.: Research on the phenomena of Meiyu during the past quarter
century: an overview, in: World Scientific Series on Meteorology of East Asia, Vol. 2, East Asian Monsoon, edited by: Chang, C.-P., World
Scientific, Singapore, 357–403, ISBN: 981-238-769-2, https://doi.org/10.1142/9789812701411_0010, 2004.
Chen, G. T.-J. and Chi, S.-S.: On the frequency and speed of mei-yu front
over southern China and the adjacent areas, Pap. Meteor. Res., 3, 31–42,
1980.
Chen, G. T.-J. and Chou, H.-C.: General characteristics of squall lines
observed in TAMEX, Mon. Weather Rev., 121, 726–733, 1993.
Chen, G. T.-J. and Yu, C.-C.: Study of low-level jet and extremely heavy
rainfall over northern Taiwan in the mei-yu season, Mon. Weather Rev., 116,
884–891, 1988.
Chen, G.T.-J., Wang, C.-C., and Lin, D. T.-W.: Characteristics of low-level
jets over northern Taiwan in mei-yu season and their relationship to heavy
rain events, Mon. Weather Rev. 133, 20–43, 2005.
Chen, G. T.-J., Wang, C.-C., and Chang, S.-W.: A diagnostic case study of
meiyu frontogenesis and development of wavelike frontal disturbances in the
subtropical environment, Mon. Weather Rev., 136, 41–61, 2008.
Chen, S.-J., Kuo, Y.-H., Wang, W., Tao, Z.-Y., and Cui, B.: A modeling case
study of heavy rainstorms along the mei-yu front, Mon. Weather Rev., 126,
2330–2351, 1998.
Chen, T.-C., Yen, M.-C., Hsieh, J.-C., and Arritt, R. W.: Diurnal and
seasonal variations of the rainfall measured by the automatic rainfall and
meteorological telemetry system in Taiwan, B. Am. Meteorol. Soc., 80,
2299–2312, 1999.
Chen, X.-A. and Chen, Y.-L.: Development of low-level jets during TAMEX,
Mon. Weather Rev., 123, 1695–1719, 1995.
Chen, Y.-L., Chen, X. A., and Zhang, Y.-X.: A diagnostic study of the
low-level jet during TAMEX IOP 5, Mon. Weather Rev., 122, 2257–2284, 1994.
Chen, Y.-L., Chu, Y.-J., Chen, C.-S., Tu, C.-C., Teng, J.-H., and Lin,
P.-L.: Analysis and simulations of a heavy rainfall event over northern
Taiwan during 11–12 June 2012, Mon. Weather Rev., 146, 2697–2715, 2018.
Chi, S.-S.: The Mei-Yu in Taiwan, SFRDEST E-06-MT-03-4, Chung-Shin
Engineering Technology Research and Development Foundation, Taipei, Taiwan,
65 pp., ISBN: 986-7142-22-5, 2006.
Chien, F.-C. and Jou, B. J.-D.: MM5 ensemble mean precipitation in the
Taiwan area for three early summer convective (Mei-Yu) seasons, Weather
Forecast., 19, 735–750, 2004.
Chung, K.-S., Chiu, H.-J., Liu, C.-Y., and Lin, M.-Y.: Satellite observation
for evaluating cloud properties of the microphysical schemes in Weather
Research and Forecasting simulation: A case study of the Mei-yu front
precipitation system, Remote Sens., 12, 3060, https://doi.org/10.3390/rs12183060, 2020.
Cotton, W. R., Tripoli, G. J., Rauber, R. M., and Mulvihill, E. A.:
Numerical simulation of the effects of varying ice crystal nucleation rates
and aggregation processes on orographic snowfall, J. Appl. Meteorol. Climatol.,
25, 1658–1680, 1986.
Ding, Y. and Chan, J. C.-L.: The East Asian summer monsoon: an overview,
Meteor. Atmos. Phys., 89, 117–142, 2005.
Ding, Y.-H.: Summer monsoon rainfalls in China, J. Meteorol. Soc. Jpn., 70,
337–396, 1992.
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980.
Gourley, J. J., Zhang, J., Maddox, R. A., Calvert, C. M., and Howard, K. W.:
A real-time precipitation monitoring algorithm – Quantitative Precipitation
Estimation Using Multiple Sensors (QPE-SUMS), in: Preprints, Symposium on
Precipitation Extremes: Prediction, Impacts, and Responses, Albuquerque, NM,
Am. Meteorol. Soc., 57–60, 2001.
Houze Jr., R. A., Rutledge, S. A., Biggerstaff, M. I., and Smull, B. F.:
Interpretation of Doppler radar displays of mid-latitude mesoscale
convective systems, B. Am. Meteorol. Soc., 70, 608–619, 1989.
Hsu, J.: ARMTS up and running in Taiwan, Väisälä News, Väisälä, 146,
24–26, 1998.
Ikawa, M. and Saito, K.: Description of a nonhydrostatic model developed at
the Forecast Research Department of the MRI, MRI Tech., Rep. 28, Meteorological Research Institute, Tsukuba, Japan, 238 pp., https://doi.org/10.11483/mritechrepo.28, 1991.
Huang, W.-R. Liu, P.-Y., Chen, J.-H., and Deng, L.: Impact of Boreal Summer
Intra-Seasonal Oscillations on the heavy rainfall events in Taiwan during
the 2017 Meiyu season, Atmosphere, 10, 205, 18 pp., https://doi.org/10.3390/atmos10040205, 2019.
Johnson, R. H.: Diurnal cycle of monsoon convection, in: The Global Monsoon
System: Research and Forecast, 2nd Edition, edited by: Chang, C.-P., Ding,
Y., Lau, N.-C., Johnson, R. H., Wang, B., and Yasunari, T., World Scientific,
Toh Tuck Link, Singapore, 257–276,
https://doi.org/10.1142/9789814343411_0015, 2011.
Jou, B. J.-D. and Deng, S.-M.: Structure of a low-level jet and its role in
triggering and organizing moist convection over Taiwan: a TAMEX case study,
Terr. Atmos. Ocean. Sci., 3, 39–58, 1992.
Kalnay, E., Kanamitsu, M., and Baker, W. E.: Global numerical weather
prediction at the National Meteorological Center, B. Am. Meteorol. Soc., 71,
1410–1428, 1990.
Ke, C.-Y., Chung, K.-S., Chen Wang, T.-C., and Liou, Y.-C.: Analysis of
heavy rainfall and barrier-jet evolution during Mei-Yu season using multiple
Doppler radar retrievals: a case study on 11 June 2012, Tellus A, 71,
1571369, https://doi.org/10.1080/16000870.2019.1571369, 2019.
Kerns, B. W. J., Chen, Y.-L., and Chang, M.-Y.: The diurnal cycle of winds,
rain, and clouds over Taiwan during the mei-yu, summer, and autumn rainfall
regimes, Mon. Weather Rev., 138, 497–516,
https://doi.org/10.1175/2009MWR3031.1, 2010.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W. S., and
Lord, S.: Introduction of the GSI into the NCEP global data assimilation
system, Weather Forecast., 24, 1691–1705, 2009.
Kondo, J.: Heat balance of the East China Sea during the air mass transformation
experiment, J. Meteorol. Soc. Jpn., 54, 382–398, 1976.
Kuo, Y.-H. and Chen, G. T.-J.: The Taiwan Area Mesoscale Experiment (TAMEX):
an overview, B. Am. Meteorol. Soc., 71, 488–503, 1990.
Lau, K.-M., Yang, G. J., and Shen, S. H.: Seasonal and intraseasonal
climatology of summer monsoon rainfall over East Asia, Mon. Weather Rev.,
116, 18–37, 1988.
Li, J. and Chen, Y.-L.: Barrier jets during TAMEX, Mon. Weather Rev., 126,
959–971, 1998.
Lin, Y.-J., Wang, T.-C. C., Pasken, R. W., Shen, H., and Deng, Z.-S.:
Characteristics of a subtropical squall line determined from TAMEX
dual-Doppler data, Part II: Dynamic and thermodynamic structures and
momentum budgets, J. Atmos. Sci., 47, 2382–2399, 1990.
Lin, Y.-L.: Orographic effects on airflow and mesoscale weather systems over
Taiwan, Terr. Atmos. Ocean. Sci., 4, 381–420. 1993.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Appl. Meteorol. Climatol., 22, 1065–1092, 1983.
Lin, Y.-L., Chiao, S., Wang, T.-A., and Kaplan, M. L.: Some common
ingredients for heavy orographic rainfall, Weather Forecast., 16, 633–660,
2001.
Louis, J. F., Tiedtke, M., and Geleyn, J. F.: A short history of the
operational PBL – parameterization at ECMWF, in: Proceedings, ECMWF Workshop
on Planetary Boundary Layer Parameterization, 25–27 November 1981, ECMWF, Reading,
UK, 59–79, https://www.ecmwf.int/en/elibrary/75473-short-history-pbl-parameterization-ecmwf (last access: 21 April 2021), 1982.
Lupo, K. M., Torn, R. D., and Yang, S.-C.: Evaluation of stochastic
perturbed parameterization tendencies on convective-permitting ensemble
forecasts of heavy rainfall events in New York and Taiwan, Weather
Forecast., 35, 5–24, 2020.
Metzger, E. J., Wallcraft, A. J., Posey, P. G., Smedstad, O. E., and
Franklin, D. S.: The switchover from NOGAPS to NAVGEM 1.1 Atmospheric
Forcing in GOFS and ACNFS, NRL/MR/7320–13-9486, Naval Research Laboratory, Oceanography Division, Stennis Space Center, MS, USA, 13 pp., https://www.hycom.org/attachments/377_NRL MR-9486.pdf (last access: 1 April 2021), 2013.
Moorthi, S., Pan, H. L., and Caplan, P.: Changes to the 2001 NCEP
operational MRF/AVN global analysis/forecast system, Tech. Procedures Bull.
484, Office of Meteorology, National Weather Service, Silver Spring, MD, USA, 14 pp., https://rda.ucar.edu/datasets/ds093.0/docs/484.pdf (last access: 20 June 2020), 2001.
Murakami, M.: Numerical modeling of dynamical and microphysical evolution of
an isolated convective cloud – The 19 July 1981 CCOPE cloud, J. Meteorol.
Soc. Jpn., 68, 107–128, 1990.
Murakami, M., Clark, T. L., and Hall, W. D.: Numerical simulations of
convective snow clouds over the Sea of Japan: two-dimensional simulations of
mixed layer development and convective snow cloud formation, J. Meteorol.
Soc. Jpn., 72, 43–62, 1994.
Nagata, M. and Ogura, Y.: A modeling case study of interaction between heavy
precipitation and a low-level jet over Japan in the baiu season, Mon.
Weather Rev., 119, 1309–1336, 1991.
Pierrehumbert, R. T. and Wyman, B.: Upstream effects of mesoscale mountains,
J. Atmos. Sci., 42, 977–1003, 1985.
Rotunno, R., Klemp, J. B., and Weisman, M. L.: A theory for strong,
long-lived squall lines, J. Atmos. Sci., 45, 463–485, 1988.
Ruppert, J. H., Jr., Johnson, R. H., and Rowe, A. K.: Diurnal circulations
and rainfall in Taiwan during SoWMEX/TiMREX (2008), Mon. Weather Rev., 141,
3851–3872, 2013.
Segami, A., Kurihara, K., Nakamura, H., Ueno, M., Takano, I., and Tatsumi,
Y.: Operational mesoscale weather prediction with Japan Spectral Model, J.
Meteorol. Soc. Jpn., 67, 907–924, 1989.
Torn, R. D. and Hakim, G. J.: Ensemble-based sensitivity analysis, Mon.
Weather Rev., 136, 663–677, 2008.
Tsuboki, K. and Sakakibara, A.: Large-scale parallel computing of cloud
resolving storm simulator, in: High Performance Computing, ISHPC 2002, Lecture Notes in Computer Science, Vol. 2327, edited by: Zima,
H. P., Joe, K., Sato, M., Seo, Y., and Shimasaki, M., Springer-Verlag,
Berlin and Heidelberg, Germany, 243–259, ISBN: 978-3-540-43674-4, https://doi.org/10.1007/3-540-47847-7_21, 2002.
Tsuboki, K. and Sakakibara, A.: Numerical Prediction of High-Impact Weather
Systems: The Textbook for the Seventeenth IHP Training Course in 2007,
Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO,
Nagoya, Japan, 273 pp., ISBN: 978-4-9980619-8-4, 2007.
Tu, C.-C., Chen, Y.-L., Lin, P.-L., and Huang, M.-Q.: Analysis and
simulations of a heavy rainfall event associated with the passage of a
shallow front over northern Taiwan on 2 June 2017, Mon. Weather Rev., 150,
505–528, 2022.
Wang, C.-C., Chen, G. T.-J., Chen, T.-C., and Tsuboki, K.: A numerical study
on the effects of Taiwan topography on a convective line during the mei-yu
season, Mon. Weather Rev., 133, 3217–3242, 2005.
Wang, C.-C., Chen, G. T.-J., and Huang, S.-Y.: Remote trigger of deep
convection by cold outflow over the Taiwan Strait in the mei-yu season: A
modeling study of the 8 June 2007 case, Mon. Weather Rev., 139, 2854–2875,
2011.
Wang, C.-C., Kuo, H.-C., Chen, Y.-H., Huang, H.-L., Chung, C.-H., and
Tsuboki, K.: Effects of asymmetric latent heating on typhoon movement
crossing Taiwan: The case of Morakot (2009) with extreme rainfall, J. Atmos.
Sci., 69, 3172–3196, 2012.
Wang, C.-C., Hsu, J. C.-S., Chen, G. T.-J., and Lee, D.-I.: A study of two
propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8
in June 2008, Part I: Synoptic evolution, episode propagation, and model
control simulation, Mon. Weather Rev., 142, 2619–2643, 2014a.
Wang, C.-C., Hsu, J. C.-S., Chen, G. T.-J., and Lee, D.-I.: A study of two
propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8
in June 2008, Part II: Sensitivity tests on the roles of synoptic conditions
and topographic effects, Mon. Weather Rev., 142, 2644–2664, 2014b.
Wang, C.-C., Chiou, B.-K., Chen, G. T.-J., Kuo, H.-C., and Liu, C.-H.: A
numerical study of back-building process in a quasistationary rainband with
extreme rainfall over northern Taiwan during 11–12 June 2012, Atmos. Chem.
Phys., 16, 12359–12382, doi.org/10.5194/acp-16-12359-2016, 2016.
Wang, C.-C., Paul, S., Chien, F.-C., Lee, D.-I., and Chuang, P.-Y.: An
evaluation of WRF rainfall forecasts in Taiwan during three mei-yu seasons
of 2008–2010, Weather Forecast., 32, 1329–1351,
https://doi.org/10.1175/WAF-D-16-0190.1, 2017.
Wang, C.-C., Li, M.-S., Chang, C.-S., Chuang, P.-Y., Chen, S.-H., and
Tsuboki, K.: Ensemble-based sensitivity analysis and predictability of an
extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June
2017 case, Atmos. Res., 259, 105684, https://doi.org/10.1016/j.atmosres.2021.105684, 2021.
Wang, C.-C., Chuang, P.-Y., Chang, C.-S., Tsuboki, K., Huang, S.-Y., and Leu, G.-C.: Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014, Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, 2022a.
Wang, C.-C., Chuang, P.-Y., Chen, S.-T., Lee, D.-I., and Tsuboki, K.:
Idealized simulations of Mei-yu rainfall in Taiwan under uniform
southwesterly flow using a cloud-resolving model, Nat. Hazards Earth Syst. Sci., 22, 1759–1817, https://doi.org/10.5194/nhess-22-1795-2022,
2022b.
Yeh, H.-C. and Chen, Y.-L.: Characteristics of the rainfall distribution
over Taiwan during TAMEX, J. Appl. Meteorol. Clim., 37, 1457–1469,
https://doi.org/10.1175/1520-0450(1998)037<1457:CORDOT>2.0.CO;2, 1998.
Yeh, H.-C. and Chen, Y.-L.: The role of offshore convergence on coastal
rainfall during TAMEX IOP 3, Mon. Weather Rev., 130, 2709–2730, 2002.
Yeh, H.-C. and Chen, Y.-L.: Numerical simulations of the barrier jet over
northwestern Taiwan during the Mei-Yu Season, Mon. Weather Rev., 131,
1396–1407, 2003.
Xu, W., Zipser, E. J., Chen, Y.-L., Liu, C., Liou, Y.-C., Lee, W.-C., and
Jou, B. J.-D.: An orography-associated extreme rainfall event during TiMREX:
initiation, storm evolution, and maintenance, Mon. Weather Rev., 140,
2555–2574, 2012.
Short summary
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is studied using a cloud model. Two 1 km experiments with peak amounts of 541 and 400 mm are compared to isolate the reasons for such a difference. It is found that the frontal rainband remains fixed in location for a longer period in the former run due to a low disturbance that acts to focus the near-surface convergence. Therefore, the rainfall is more concentrated and there is a higher total amount.
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is...
Altmetrics
Final-revised paper
Preprint