Articles | Volume 23, issue 5
https://doi.org/10.5194/acp-23-2927-2023
https://doi.org/10.5194/acp-23-2927-2023
Research article
 | 
06 Mar 2023
Research article |  | 06 Mar 2023

Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic

Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw

Data sets

Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic, model data R. Price https://doi.org/10.5281/zenodo.7181831

Data from expedition Arctic Ocean, 2018 C. Leck, P. Matrai, P. Achtert, M. Adams, A. Baccarini, B. Brooks, I. Brooks, L. Dada, K. Dällenbach, G. DiTullio, J. Dommen, U. Egerer, M. Gottschalk, L. Ickes, L. Karlsson, M. Lawler, P. Lee, A. Meiton, C. Mohr, B. Murray, R. Neely III, E. Nilsson, G. Porter, J. Prytherch, M. Salter, E. Saltzman, N. Schanke, J. Schmale, K. Siegel, M. Tjernström, A. Vilchez, J. Vüllers, H. Wernli, P. Zieger, and J. Zinke https://doi.org/10.17043/oden-ao-2018-expedition-2

Vertical stratification of submicrometer aerosol particles measured during the high-Arctic ASCOS expedition 2008 C. Leck, J. Sedlar, E. Swietlicki, S. Sjögren, B. Brooks, and S. Norris https://doi.org/10.17043/oden-ascos-2008-aerosol-stratification-1

ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols S. C. Wofsy, S. Afshar, H. M. Allen, E. C. Apel, E. C. Asher, B. Barletta, J. Bent, H. Bian, B. C. Biggs, D. R. Blake, N. Blake, I. Bourgeois, C. A. Brock, W. H. Brune, J. W. Budney, T. P. Bui, A. Butler, P. Campuzano-Jost, C. S. Chang, M. Chin, R. Commane, G. Correa, J. D. Crounse, P. D. Cullis, B. C. Daube, D. A. Day, J. M. Dean-Day, J. E. Dibb, J. P. DiGangi, G. S. Diskin, M. Dollner, J. W. Elkins, F. Erdesz, A. M. Fiore, C. M. Flynn, K. D. Froyd, D. W. Gesler, S. R. Hall, T. F. Hanisco, R. A. Hannun, A. J. Hills, E. J. Hintsa, A. Hoffman, R. S. Hornbrook, L. G. Huey, S. Hughes, J. L. Jimenez, B. J. Johnson, J. M. Katich, R. F. Keeling, M. J. Kim, A. Kupc, L. R. Lait, K. McKain, R. J. Mclaughlin, S. Meinardi, D. O. Miller, S. A. Montzka, F. L. Moore, E. J. Morgan, D. M. Murphy, L. T. Murray, B. A. Nault, J. A. Neuman, P. A. Newman, J. M. Nicely, X. Pan, W. Paplawsky, J. Peischl, M. J. Prather, D. J. Price, E. A. Ray, J. M. Reeves, M. Richardson, A. W. Rollins, K. H. Rosenlof, T. B. Ryerson, E. Scheuer, G. P. Schill, J. C. Schroder, J. P. Schwarz, J. M. St.Clair, S. D. Steenrod, B. B. Stephens, S. A. Strode, C. Sweeney, D. Tanner, A. P. Teng, A. B. Thames, C. R. Thompson, K. Ullmann, P. R. Veres, N. L. Wagner, A. Watt, R. Weber, B. B. Weinzierl, P. O. Wennberg, C. J. Williamson, J. C. Wilson, G. M. Wolfe, C. T. Woods, L. H. Zeng, and N. Vieznor https://doi.org/10.3334/ORNLDAAC/1925

Model code and software

ruthprice/price-acp-figures: code R. Price https://doi.org/10.5281/zenodo.7185175

Download
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Altmetrics
Final-revised paper
Preprint