Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-2273-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-2273-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interannual variability in the ecosystem CO2 fluxes at a paludified spruce forest and ombrotrophic bog in the southern taiga
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Avenue, 119071 Moscow, Russia
Faculty of Geography and Geoinformation Technology, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 109028 Moscow, Russia
Vitaly Avilov
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Avenue, 119071 Moscow, Russia
Dmitry Ivanov
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Avenue, 119071 Moscow, Russia
Andrey Varlagin
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Avenue, 119071 Moscow, Russia
Julia Kurbatova
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Avenue, 119071 Moscow, Russia
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Egor Dyukarev, Nina Filippova, Dmitriy Karpov, Nikolay Shnyrev, Evgeny Zarov, Ilya Filippov, Nadezhda Voropay, Vitaly Avilov, Arseniy Artamonov, and Elena Lapshina
Earth Syst. Sci. Data, 13, 2595–2605, https://doi.org/10.5194/essd-13-2595-2021, https://doi.org/10.5194/essd-13-2595-2021, 2021
Short summary
Short summary
A hydrological and meteorological dataset collected at the Mukhrino peatland, Khanty–Mansi Autonomous Okrug – Yugra, Russia, over the period of 8 May 2010 to 31 December 2019 is presented. Northern peatlands represent one of the largest carbon pools in the biosphere. The carbon they store is increasingly vulnerable to perturbation. Meteorological observations directly at peatland areas in Siberia are rare, while peatlands are characterized by a specific local climate.
Cited articles
Alekseychik, P., Mammarella, I., Karpov, D., Dengel, S., Terentieva, I., Sabrekov, A., Glagolev, M., and Lapshina, E.: Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog, Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, 2017.
Alexandrov, G. A., Brovkin, V. A., Kleinen, T., and Yu, Z.: The capacity of
northern peatlands for long-term carbon sequestration, Biogeosciences, 17,
47–54, https://doi.org/10.5194/bg-17-47-2020, 2020.
Alm, J., Schulman, L., Walden, J., Nykänen, H., Martikainen, P. J., and
Silvola, J.: Carbon balance of a boreal bog during a year with an exceptionally dry summer, Ecology, 80, 161–174, https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2, 1999.
Aurela, M., Laurila, T., and Tuovinen, J. P.: Annual CO2 balance of a subarctic fen in northern Europe: Importance of the wintertime efflux, J.
Geophys. Res.-Atmos., 107, ACH 17-1–ACH 17-12, https://doi.org/10.1029/2002JD002055,
2002.
Aurela, M., Laurila, T., and Tuovinen, J. P.: The timing of snow melt
controls the annual CO2 balance in a subarctic fen, Geophys. Res. Lett., 31, L16119, https://doi.org/10.1029/2004GL020315, 2004.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, É.: Peat deposits
store more carbon than trees in forested peatlands of the boreal biome, Sci.
Rep.-UK, 11, 1–11, https://doi.org/10.1038/s41598-021-82004-x, 2021.
Black, T. A., Chen, W. J., Barr, A. G., Arain, M. A., Chen, Z., Nesic, Z.,
Hogg, E. H., Neumann, H. H., and Yang, P. C.: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring, Geophys. Res. Lett., 27, 1271–1274, https://doi.org/10.1029/1999GL011234, 2000.
Buitenwerf, R., Rose, L., and Higgins, S. I.: Three decades of multi-dimensional change in global leaf phenology, Nat. Clim. Change, 5,
364–368, https://doi.org/10.1038/nclimate2533, 2015.
Cai, T., Flanagan, L. B., and Syed, K. H.: Warmer and drier conditions
stimulate respiration more than photosynthesis in a boreal peatland ecosystem: analysis of automatic chambers and eddy covariance measurements,
Plant Cell Environ., 33, 394–407, https://doi.org/10.1111/j.1365-3040.2009.02089.x, 2010.
D'Acunha, B., Morillas, L., Black, T. A., Christen, A., and Johnson, M. S.: Net ecosystem carbon balance of a peat bog undergoing restoration:
integrating CO2 and CH4 fluxes from eddy covariance and aquatic evasion with DOC drainage fluxes, J. Geophys. Res.-Biogeo., 124, 884–901, https://doi.org/10.1029/2019JG005123, 2019.
Desherevskaya, O., Kurbatova, J., and Olchev, A.: Climatic conditions of the
south part of Valday Hills, Russia, and their projected changes during the
21st century, Open Geogr. J., 3, 73–79, https://doi.org/10.2174/1874923201003010073, 2010.
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack,
C., Klein Tank, A. M. G., Kruger, A. C., Marengo, J., Peterson, T. C.,
Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S., Srivastava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P., Zhang, X., and Kitching S.: Updated analyses of temperature and
precipitation extreme indices since the beginning of the twentieth century:
The HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098–2118, https://doi.org/10.1002/jgrd.50150, 2013.
Drösler, M., Freibauer, A., Christensen, T. R., and Friborg, T.:
Observations and status of peatland greenhouse gas emissions in Europe, in:
The Continental-Scale Greenhouse Gas Balance of Europe, Ecological Studies,
edited by: Dolman, A. J., Valentini, R., and Freibauer, A., Springer, New York, USA, 243–261, https://doi.org/10.1007/978-0-387-76570-9_12, 2008.
Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C.:
A long-term record of carbon exchange in a boreal black spruce forest:
Means, responses to interannual variability, and decadal trends, Global Change Biol., 13, 577–590, https://doi.org/10.1111/j.1365-2486.2006.01221.x, 2007.
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and Harden,
J. W.: Differential response of carbon fluxes to climate in three peatland
ecosystems that vary in the presence and stability of permafrost, J. Geophys.
Res.-Biogeo., 119, 1576–1595, https://doi.org/10.1002/2014JG002683, 2014.
Fahnestock, J. T., Jones, M. H., and Welker, J. M.: Wintertime CO2
efflux from arctic soils: implications for annual carbon budgets, Global
Biogeochem. Cy., 13, 775–779, https://doi.org/10.1029/1999GB900006, 1999.
Gill, A. L., Giasson, M. A., Yu, R., and Finzi, A. C.: Deep peat warming
increases surface methane and carbon dioxide emissions in a black
spruce-dominated ombrotrophic bog, Global Change Biol., 23, 5398–5411,
https://doi.org/10.1111/gcb.13806, 2017.
Gorham, E.: Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182–195, https://doi.org/10.2307/1941811, 1991.
Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumbore, S. E., Crill, P. M.,
Gower, S. T., Fries, T., Daube, B. C., Fand, S.-M., Sutton, J., Bazzaz, A.,
and Munger, J. W.: Sensitivity of boreal forest carbon balance to soil thaw,
Science, 279, 214–217, https://doi.org/10.1126/science.279.5348.214, 1998.
Greco, S. and Baldocchi, D. D.: Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest, Global Change Biol., 2, 183–197, https://doi.org/10.1111/j.1365-2486.1996.tb00071.x, 1996.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., Norby, R. J., Sebestyen, S.
D., Phillips, J. R., Chanton, J. P., Kolka, R. K., Malhotra, A., Oleheiser, K.
C., Warren, J. M., Shi, X., Yang, X., Mao, J., and Ricciuto, D. M.: Rapid net
carbon loss from a whole-ecosystem warmed Peatland, AGU Adv., 1, e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Helbig, M., Chasmer, L. E., Desai, A. R., Kljun, N., Quinton, W. L., and
Sonnentag, O.: Direct and indirect climate change effects on carbon dioxide
fluxes in a thawing boreal forest-wetland landscape, Global Change Biol., 23, 3231–3248, https://doi.org/10.1111/gcb.13638, 2017.
Helbig, M., Humphreys, E. R., and Todd, A.: Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada, J. Geophys. Res.-Biogeo., 124, 2126–2143, 2019.
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B., Aurela, M., Barr,
A. G., Black, T. A., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A.,
Euskirchen, E. S., Flanagan, L. B., Friborg, T., Garneau, M., Grelle, A.,
Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H., Isabelle, P.-E., Iwata,
H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lapshina, E.,
Lindroth, A., Ottosson Löfvenius, M., Lohila, A., Mammarella, I., Marsh,
P., Moore, P. A., Maximov, T., Nadeau, D. F., Nicholls, E. M., Nilsson, M. B., Ohta, T., Peich, M., Petrone, R. M., Prokushkin, A., Quinton, W. L., Roulet, N., Runkle, B. R. K., Sonnentag, O., Strachan, I. B., Taillardat, P.,
Tuittila, E.-S., Tuovinen, J.-K., Turner, J., Ueyama, M., Varlagin, A., Vesala, T., Wilmking, M., Zyrianov, V., and Schulze, C.: The biophysical
climate mitigation potential of boreal peatlands during the growing season,
Environ. Res. Lett., 15, 104004, https://doi.org/10.1088/1748-9326/abab34, 2020.
Holl, D., Pfeiffer, E.-M., and Kutzbach, L.: Comparison of eddy covariance
CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog, Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, 2020.
Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P.: Can a bog
drained for forestry be a stronger carbon sink than a natural bog forest?,
Biogeosciences, 11, 3477–3493, https://doi.org/10.5194/bg-11-3477-2014, 2014.
Hu, J. I. A., Moore, D. J., Burns, S. P., and Monson, R. K.: Longer growing
seasons lead to less carbon sequestration by a subalpine forest, Global Change Biol., 16, 771–783, https://doi.org/10.1111/j.1365-2486.2009.01967.x, 2010.
Humphreys, E. R., Lafleur, P. M., Flanagan, L. B., Hedstrom, N., Syed, K. H., Glenn, A. J., and Granger, R.: Summer carbon dioxide and water vapor fluxes across a range of northern peatlands, J. Geophys. Res.-Biogeo., 111, G04011, https://doi.org/10.1029/2005JG000111, 2006.
IPCC: Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (last access: 11 March 2022), 2014.
IPCC: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner,
H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 896 pp., https://doi.org/10.1017/9781009157988, 2019.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Ivanov, D. G., Avilov, V. K., and Kurbatova, Y. A.: CO2 fluxes at south taiga bog in the European part of Russia in summer, Contemp. Probl.
Ecol., 10, 97–104, https://doi.org/10.1134/S1995425517020056, 2017.
Ivanov, D. G., Kotlov, I. P., Minayeva, T. Y., and Kurbatova, J. A.:
Estimation of carbon dioxide fluxes on a ridge-hollow bog complex using a
high resolution orthophotoplan, Nat. Conserv. Res., 6, 16–28,
https://doi.org/10.24189/ncr.2021.020, 2021.
Karpov, V. G. (Ed.): Spruce forests of the territory, in: Regulation of factors of spruce forest ecosystems, edited by: Nauka, Leningrad, USSR,
7–31, 1983.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple
parameterisation for flux footprint predictions, Bound.-Lay. Meteorol., 112, 503–523, https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004.
Koehler, A. K., Sottocornola, M., and Kiely, G.: How strong is the current
carbon sequestration of an Atlantic blanket bog?, Global Change Biol., 17,
309–319, https://doi.org/10.1111/j.1365-2486.2010.02180.x, 2011.
Kolle, O. and Rebmann, C.: EddySoft – Documentation of a Software Package
to Aquire and Process Eddy Covariance Data, Technical Report 10, Max-Planck-Institut für Biogeochemie, Jena, Germany, 85 pp., https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00020684/tech_report10.pdf (last access: 11 March 2022), 2007.
Kurbatova, J., Arneth, A., Vygodskaya, N. N., Kolle, O., Varlargin, A. V.,
Milyukova, I. M., Tchebakova, N. M., Schulze, E.-D., and Lloyd, J.:
Comparative ecosystem–atmosphere exchange of energy and mass in a European
Russian and a central Siberian bog I. Interseasonal and interannual
variability of energy and latent heat fluxes during the snowfree period,
Tellus B, 54, 497–513, https://doi.org/10.3402/tellusb.v54i5.16683, 2002.
Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.: Modeling
carbon dynamics in two adjacent spruce forests with different soil
conditions in Russia, Biogeosciences, 5, 969–980, https://doi.org/10.5194/bg-5-969-2008, 2008.
Kurbatova, J., Tatarinov, F., Molchanov, A., Varlagin, A., Avilov, V., Kozlov, D., Ivanov, D., and Valentini, R.: Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern taiga
of European Russia, Environ. Res. Lett., 8, 045028, https://doi.org/10.1088/1748-9326/8/4/045028, 2013.
Kuricheva, O., Mamkin, V., Sandlersky, R., Puzachenko, J., Varlagin, A., and
Kurbatova, J.: Radiative entropy production along the paludification gradient in the southern taiga, Entropy, 19, 43, https://doi.org/10.3390/e19010043, 2017.
Lafleur, B., Fenton, N. J., and Bergeron, Y.: Forecasting the development of
boreal paludified forests in response to climate change: a case study using
Ontario ecosite classification, Forest Ecosyst., 2, 1–11, https://doi.org/10.1186/s40663-015-0027-6, 2015.
Lafleur, P. M., Griffis, T. J., and Rouse, W. R.: Interannual variability in
net ecosystem CO2 exchange at the arctic treeline, Arct. Antarct. Alp. Res., 33, 149–157, https://doi.org/10.1080/15230430.2001.12003417, 2001.
Lafleur, P. M., Moore, T. R., Roulet, N. T., and Frolking, S.: Ecosystem
respiration in a cool temperate bog depends on peat temperature but not water table, Ecosystems, 8, 619–629, https://doi.org/10.1007/s10021-003-0131-2, 2005.
Lavoie, M., Paré, D., and Bergeron, Y.: Impact of global change and forest management on carbon sequestration in northern forested peatlands, Environ. Rev., 13, 199–240, https://doi.org/10.1139/a05-014, 2005.
Lindroth, A., Lund, M., Nilsson, M., Aurela, M., Christensen, T. R., Laurila, T., Rinne, J., Riutta, T., Sagerfors, J., Ström, L., Tuovinen, J.-P., and Vesala, T.: Environmental controls on the CO2 exchange in north European mires, Tellus B, 59, 812–825, https://doi.org/10.1111/j.1600-0889.2007.00310.x, 2007.
Lohila, A., Minkkinen, K., Aurela, M., Tuovinen, J.-P., Penttilä, T.,
Ojanen, P., and Laurila, T.: Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink, Biogeosciences, 8,
3203–3218, https://doi.org/10.5194/bg-8-3203-2011, 2011.
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G.,
Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J.,
Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla,
C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L.,
Garneau, M., Moore, T., Sannel, A. B. K., Page, S., Väliranta, M.,
Bechtold, M., Brovkin, V., Cole, L. E. S., Chanton, J. P., Christensen, T.
R., Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S.,
Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt,
A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T.,
Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M.,
Minkkinen, K., Moss, P., Naafs, B. D. A., Nichols, J., O'Donnell, J., Payne,
R., Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P.,
Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot, J.,
Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11,
70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021.
Lund, M., Lindroth, A., Christensen, T. R., and Stroem, L.: Annual CO2 balance of a temperate bog, Tellus B, 59, 804–811, https://doi.org/10.1111/j.1600-0889.2007.00303.x, 2007.
Lund, M., Christensen, T. R., Lindroth, A., and Schubert, P.: Effects of
drought conditions on the carbon dioxide dynamics in a temperate peatland,
Environ. Res. Lett., 7, 045704, https://doi.org/10.1088/1748-9326/7/4/045704, 2012.
Mamkin, V., Kurbatova, J., Avilov, V., Ivanov, D., Kuricheva, O., Varlagin,
A., Yaseneva, I., and Olchev, A.: Energy and CO2 exchange in an
undisturbed spruce forest and clear-cut in the Southern Taiga, Agr. Forest
Meteorol., 265, 252–268, https://doi.org/10.1016/j.agrformet.2018.11.018, 2019.
Martikainen, P. J., Nykänen, H., Alm, J., and Silvola, J.: Change in
fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy, Plant Soil, 168, 571–577, https://doi.org/10.1007/BF00029370, 1995.
Matthews, B., Mayer, M., Katzensteiner, K., Godbold, D. L., and Schume, H.:
Turbulent energy and carbon dioxide exchange along an early-successional
windthrow chronosequence in the European Alps, Agr. Foret Meteorol., 232,
576–594, https://doi.org/10.1016/j.agrformet.2016.10.011, 2017.
Mauder, M. and Foken, T.: Impact of post-field data processing on eddy
covariance flux estimates and energy balance closure, Meteorol. Z., 15,
597–610, https://doi.org/10.1127/0941-2948/2006/0167, 2006.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest Meteorol.,
169, 122–135, https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.
Milyukova, I. M., Kolle, O., Varlagin, A. V., Vygodskaya, N. N., Schulze, E.
D., and Lloyd, J.: Carbon balance of a southern taiga spruce stand in European Russia, Tellus B, 54, 429–442, https://doi.org/10.3402/tellusb.v54i5.16679,
2002.
Minkkinen, K., Ojanen, P., Penttilä, T., Aurela, M., Laurila, T., Tuovinen, J.-P., and Lohila, A.: Persistent carbon sink at a boreal drained
bog forest, Biogeosciences, 15, 3603–3624, https://doi.org/10.5194/bg-15-3603-2018, 2018.
Moore, P. D.: The future of cool temperate bogs, Environ. Conserv., 29, 3–20, https://doi.org/10.1017/S0376892902000024, 2002.
Mueller, B., Hauser, M., Iles, C., Haque Rimi, R., Zwiers, F. W., and Wan,
H.: Lengthening of the growing season in wheat and maize producing regions,
Weather Clim. Extrem., 9, 47–56, https://doi.org/10.1016/j.wace.2015.04.001, 2015.
Novenko, E. Y. and Olchev, A. V.: Early Holocene vegetation and climate
dynamics in the central part of the East European Plain (Russia), Quatern.
Int., 388, 12–22, https://doi.org/10.1016/j.quaint.2015.01.027, 2015.
Park, S. B., Knohl, A., Migliavacca, M., Thum, T., Vesala, T., Peltola, O.,
Mammarella, I., Prokushkin, A., Kolle, O., Lavrič, J., Park, S. S., and
Heimann, M.: Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia, Atmosphere, 12, 984, https://doi.org/10.3390/atmos12080984, 2021.
Parmentier, F. J. W., Van der Molen, M. K., De Jeu, R. A. M., Hendriks, D.
M. D., and Dolman, A. J.: CO2 fluxes and evaporation on a peatland in the Netherlands appear not affected by water table fluctuations, Agr. Forest Meteorol., 149, 1201–1208, https://doi.org/10.1016/j.agrformet.2008.11.007, 2009.
Pavelka, M., Acosta, M., Marek, M. V., Kutsch, W., and Janous, D.: Dependence
of the Q10 values on the depth of the soil temperature measuring point,
Plant Soil, 292, 171–179, https://doi.org/10.1007/s11104-007-9213-9, 2007.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen–Geiger climate classification, Hydrol. Earth Syst. Sci., 11,
1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Petrescu, A. M. R., Lohila, A., Tuovinen, J. P., Baldocchi, D. D., Desai, A.
R., Roulet, N. T., Vesala, T., Dolman, A. J., Oechel, W. C., Marcolla, B.,
Friborg, T., Rinne, J., Matthes, J. H., Merbold, L., Meijide, A., Kiely, G.,
Sottocornola, M., Sachs, T., Zona, D., Varlagin, A., Lai, D. Y. F.,
Veenendaal, E., Parmentier, F.-J. W., Skiba, U., Lund, M., Hensen, A., van Huissteden, J., Flanagan, L. B., Shurpali, N. J., Grünwald, T., Humphreys, E. R., Jackowicz-Korczyński, M., Aurela, M. A., Laurila, T., Grüning, C., Corradi, C. A. R., Schrier-Uijl, A. P., Christensen, T. R., Tamstorf, M. P., Mastepanov, M., Martikainen, P. J., Verma, S. B., Bernhofer, C., and Cescatti, A.: The uncertain climate footprint of wetlands under human pressure, P. Natl. Acad. Sci. USA, 112, 4594–4599, https://doi.org/10.1073/pnas.1416267112, 2015.
Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., Grelle, A.,
Hollinger, D. Y., Laurila, T., Lindroth, A., Richardson, A. D., and Vesala, T.: Net carbon dioxide losses of northern ecosystems in response to autumn
warming, Nature, 451, 49–52, https://doi.org/10.1038/nature06444, 2008.
Puzachenko, Y. G., Kotlov, L. P., and Sandlerskiy, R. B.: Analysis of changes of land cover using multispectral remote sensing information in the central
forest reserve, Izv. Geogr., 3, 5–18, https://doi.org/10.15356/0373-2444-2014-3-5-18,
2014.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., and Peng, S.: The role of northern
peatlands in the global carbon cycle for the 21st century, Global Ecol.
Biogeogr., 29, 956–973, https://doi.org/10.1111/geb.13081, 2020.
RIHMI-WDC database: Baseline Climatological Data Sets, http://aisori-m.meteo.ru, last access: 11 March 2022.
Roshydromet: Second Roshydromet Assessment Report on Climate Change and its
Consequences in the Russian Federation. General summary, Roshydromet,
Moscow, 56 pp., http://downloads.igce.ru/publications/OD_2_2014/v2014/pdf/resume_ob_eng.pdf (last access: 11 March 2022), 2014.
Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E.
R., and Bubier, J. I. L. L.: Contemporary carbon balance and late Holocene
carbon accumulation in a northern peatland, Global Change Biol., 13, 397–411, https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Schulze, E. D., Vygodskaya, N. N., Tchebakova, N. M., Czimczik, C. I.,
Kozlov, D. N., Lloyd, J., Sidorov, K. N., Varlagin, A. V., and Wirth, C.: The
Eurosiberian transect: an introduction to the experimental region, Tellus B,
54, 421–428, https://doi.org/10.3402/tellusb.v54i5.16678, 2002.
Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and Mackay, D. S.:
Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern
Wisconsin, USA, and nearby forests, Biogeosciences, 6, 1115–1126,
https://doi.org/10.5194/bg-6-1115-2009, 2009.
Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flanagan, L.
B., Sonnentag, O., Mackay D. S., Barr, A. G. van der Kamp, G.: CO2 fluxes at northern fens and bogs have opposite responses to inter-annual
fluctuations in water table, Geophys. Res. Lett., 37, L19702, https://doi.org/10.1029/2010GL044018, 2010.
Syed, K. H., Flanagan, L. B., Carlson, P. J., Glenn, A. J., and Van Gaalen,
K. E.: Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta, Agr. Forest Meteorol., 140, 97–114, https://doi.org/10.1016/j.agrformet.2006.03.022, 2006.
Tanja, S., Berninger, F., Vesala, T., Markkanen, T., Hari, P., Mäkelä, A., Ilvesniemi, H., Hänninen, H., Nikinmaa, E., Huttula,
T., Laurila, T., Aurela, M., Grelle, A., Lindroth, A., Arneth, A., Shibistova, O., and Lloyd, J.: Air temperature triggers the recovery of
evergreen boreal forest photosynthesis in spring, Global Change Biol., 9,
1410–1426, https://doi.org/10.1046/j.1365-2486.2003.00597.x, 2003.
Tchebakova, N. M., Vygodskaya, N. N., Arneth, A., Marchesini, L. B.,
Kurbatova, Y. A., Parfenova, E. I., Valentini, R., Verkhovets, S. V., Vaganov, E. A., and Schulze, E. D.: Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 2. carbon exchange and productivity, Biol. Bull., 42, 579–588, https://doi.org/10.1134/S1062359015660024, 2015.
Ueyama, M., Iwata, H., and Harazono, Y.: Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement, Global Change Biol., 20, 1161–1173, https://doi.org/10.1111/gcb.12434, 2014.
Urban SIS: D4.3 Indicators for urban assessments, C3S_441 Lot3 Urban SIS, D4.3, Swedish Meteorological and Hydrological Institute, 55 pp.,
https://urbansis.eu/wp-content/uploads/2020/03/D4.3_UrbanSIS_Indicators_for_urban_assessments_rev.pdf (last access: 11 March 2022), 2018.
Varlagin, A.: RU-Fyo fluxes, European Fluxes Database Cluster, Fluxdata [data set], http://www.europe-fluxdata.eu/home/site-details?id=RU-Fyo, last access: 11 March 2022.
Vompersky, S. E., Sirin, A. A., Sal'nikov, A. A., Tsyganova, O. P., and
Valyaeva, N. A.: Estimation of forest cover extent over peatlands and
paludified shallow-peat lands in Russia, Contemp. Probl. Ecol., 4, 734–741, https://doi.org/10.1134/S1995425511070058, 2011.
Vygodskaya, N. N., Schulze, E. D., Tchebakova, N. M., Karpachevskii, L. O.,
Kozlov, D., Sidorov, K. N., Panfyorov, M. I., Abrazko, M. A., Shaposhnikov,
E. S., Solnzeva, O. N., Minaeva, T. Y., Jeltuchin, A. S., Wirth, C., and
Pugachevskii, A. V.: Climatic control of stand thinning in unmanaged spruce
forests of the southern taiga in European Russia, Tellus B, 54, 443–461,
https://doi.org/10.3402/tellusb.v54i5.16680, 2002.
Walker, A. P., Carter, K. R., Gu, L., Hanson, P. J., Malhotra, A., Norby, R.
J., Sebestyen, S. D., Wullschleger, S. D., and Weston, D. J.: Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog, J. Geophys. Res.-Biogeo., 122, 1078–1097,
https://doi.org/10.1002/2016JG003711, 2017.
Weedon, J. T., Aerts, R., Kowalchuk, G. A., van Logtestijn, R., Andringa, D.,
and van Bodegom, P. M.: Temperature sensitivity of peatland C and N cycling:
does substrate supply play a role?, Soil Biol. Biochem., 61, 109–120,
https://doi.org/10.1016/j.soilbio.2013.02.019, 2013.
Welp, L. R., Randerson, J. T., and Liu, H. P.: The sensitivity of carbon
fluxes to spring warming and summer drought depends on plant functional type
in boreal forest ecosystems, Agr. Forest Meteorol., 147, 172–185, https://doi.org/10.1016/j.agrformet.2007.07.010, 2007.
Wieder, R. K. and Vitt, D. H. (Eds.): Boreal peatland ecosystems, in: Vol. 188, Springer Science & Business Media, 436 pp., https://doi.org/10.1007/978-3-540-31913-9_1, 2006.
Willmott, C. J. and Feddema, J. J.: A more rational climatic moisture index,
Profess. Geogr., 44, 84–88, https://doi.org/10.1111/j.0033-0124.1992.00084.x, 1992.
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K.,
Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible
post-processing of eddy covariance flux data with REddyProc, Biogeosciences,
15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review,
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zagirova, S. V., Mikhailov, O. A., and Schneider, J.: Carbon dioxide, heat
and water vapor exchange in the boreal spruce and peatland ecosystems,
Theor. Appl. Ecol., 3, 12–20, https://doi.org/10.25750/1995-4301-2019-3-012-020, 2019.
Zięba, A. and Ramza, P.: Standard deviation of the mean of autocorrelated
observations estimated with the use of the autocorrelation function estimated from the data, Metrol. Meas. Syst., 18, 529–542, 2011.
Short summary
We collected 6 years of flux measurements at two southern taiga peatland ecosystems, namely a paludified spruce forest and ombrotrophic bog located in the same landscape in western Russia, which showed that the interannual variability in the environmental conditions affect CO2 ecosystem–atmosphere exchange differently in forest and non-forest peatlands. We observed that an anomalously warm winter and spring led to increasing CO2 uptake at the paludified forest (more than at the bog).
We collected 6 years of flux measurements at two southern taiga peatland ecosystems, namely a...
Special issue
Altmetrics
Final-revised paper
Preprint