Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Erdbeobachtungszentrum, Deutsches Zentrum für Luft- und
Raumfahrt Oberpfaffenhofen, 82234 Wessling, Germany
Michael Bittner
Erdbeobachtungszentrum, Deutsches Zentrum für Luft- und
Raumfahrt Oberpfaffenhofen, 82234 Wessling, Germany
Institut für Physik, Universität Augsburg, 86159 Augsburg,
Germany
Patrick J. Espy
Department of Physics, Norwegian University of Science and
Technology, Trondheim, Norway
W. John R. French
Australian Antarctic Division, 203 Channel Hwy, Kingston, 7050 Tasmania, Australia
Frank J. Mulligan
Department of Experimental Physics, Maynooth University, Maynooth,
Co. Kildare, Ireland
Related authors
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021, https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020, https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Short summary
Global-scale wind measurements from the upper regions of the atmosphere are used to isolate those atmospheric waves that follow the apparent motion of the sun over the course of a day. We present 16 years of near-continuous measurements, demonstrating the unique capabilities of the array of high-latitude SuperDARN radars. The validation steps outlined in our work also provide a methodology for future studies using wind measurements from the (expanding) network of SuperDARN radars.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent
with recent laboratory measurements, J. Geophys. Res.-Space, 102, 19969–19976, https://doi.org/10.1029/97ja01622, 1997.
Anderson, D. S., Swenson, G., Kamalabadi, F., and Liu, A.: Tomographic
imaging of airglow from airborne spectroscopic measurements, Appl. Opt., 47,
2510–2519, https://doi.org/10.1364/ao.47.002510, 2008.
Andrews, D. G.: An introduction to atmospheric physics, 3rd Edition, Cambridge University
Press, ISBN 0521629586, 2000.
Baker, D. J.: Studies of atmospheric infrared emissions, Utah State University, Logan Electro-Dynamics Lab, https://apps.dtic.mil/sti/pdfs/ADA072831.pdf
(last access: 6 December 2022), 1978.
Baker, D. J. and Stair, A. T.: Rocket measurements of the altitude
distributions of the hydroxyl airglow, Physica Scripta, 37, 611–622,
https://doi.org/10.1088/0031-8949/37/4/021, 1988.
Baker, D. J., Steed, A. J., Ware, G. A., Offermann, D., Lange, G., and
Lauche, H.: Ground-based atmospheric infrared and visible emission
measurements, J. Atmos. Terr. Phys., 47, 133–145, https://doi.org/10.1016/0021-9169(85)90129-1, 1985.
Bates, D. R. and Nicolet, M.: The photochemistry of atmospheric water vapor,
J. Geophys. Res., 55, 301–327, 1950.
Battaner, E. and Lopez-Moreno, J. J.: Time and altitude variations of
vibrationally excited-states of atmospheric hydroxyl, Planet. Space Sci.,
27, 1421–1428, https://doi.org/10.1016/0032-0633(79)90088-6, 1979.
Becker, E., Grygalashvyly, M., and Sonnemann, G. R.: Gravity wave mixing
effects on the OH*-layer, Adv. Space Res., 65, 175–188, https://doi.org/10.1016/j.asr.2019.09.043, 2020.
Bellisario, C., Keckhut, P., Blanot, L., Hauchecorne, A., and Simoneau, P.:
O2 and OH Night Airglow Emission Derived from GOMOS-Envisat Instrument,
J. Atmos. Ocean. Tech., 31, 1301–1311,
https://doi.org/10.1175/jtech-d-13-00135.1, 2014.
Bellisario, C., Simoneau, P., Keckhut, P., and Hauchecorne, A.: Comparisons
of spectrally resolved nightglow emission locally simulated with space and
ground level observations, J. Space Weather Spac., 10,
21, https://doi.org/10.1051/swsc/2020017, 2020.
Berger, U. and von Zahn, U.: The two-level structure of the mesopause: A
model study, J. Geophys. Res.-Atmos., 104, 22083–22093, https://doi.org/10.1029/1999jd900389, 1999.
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature
variability above a midlatitude station in Europe, J. Geophys. Res.-Atmos., 105, 2045–2058, https://doi.org/10.1029/1999jd900307, 2000.
Bittner, M., Höppner, K., Pilger, C., and Schmidt, C.: Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards, Nat. Hazards Earth Syst. Sci., 10, 1431–1442, https://doi.org/10.5194/nhess-10-1431-2010, 2010.
Bovensmann, H., Buchwitz, M., Frerick, J., Hoogeveen, R., Kleipool, Q.,
Lichtenberg, G., Noel, S., Richter, A., Rozanov, A., Rozanov, V., Skupin,
J., von Savigny, C., Wuttke, M., and Burrows, J.: SCIAMACHY on ENVISAT:
in-flight optical performance and first results, Proc. SPIE 5235, Remote Sensing of Clouds and the Atmosphere VIII, (16 February 2004), 5235, https://doi.org/10.1117/12.514228, 2004.
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere, 2nd Edn., D. Reidel Publishing Company, ISBN 9027723443, 1986.
Chadney, J. M., Whiter, D. K., and Lanchester, B. S.: Effect of water vapour
absorption on hydroxyl temperatures measured from Svalbard, Ann. Geophys., 35, 481–491, https://doi.org/10.5194/angeo-35-481-2017, 2017.
Chen, Q., Kaufmann, M., Zhu, Y., Liu, J., Koppmann, R., and Riese, M.: Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region, Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019, 2019.
Cosby, P. and Slanger, T.: OH spectroscopy and chemistry investigated with
astronomical sky spectra, Can. J. Phys., 85, 77–99, 2007.
Danilov, A. D.: Mechanism of red oxygen line excitation in night airglow,
Planet. Space Sci., 9, 499–502, https://doi.org/10.1016/0032-0633(62)90053-3, 1962.
Espy, P. and Hammond, M.: Atmospheric transmission coefficients for hydroxyl
rotational lines used in rotational temperature determinations, J. Quant. Spectrosc. Ra., 54, 879–889, 1995.
Espy, P. and Stegman, J.: Trends and variability of mesospheric temperature
at high-latitudes, Phys. Chem. Earth, Parts A/B/C, 27,
543–553, 2002.
Franzen, C., Espy, P. J., Hibbins, R. E., and Djupvik, A. A.: Observation of
Quasiperiodic Structures in the Hydroxyl Airglow on Scales Below 100 m,
J. Geophys. Res.-Atmos., 123, 10935–10942, 2018.
French, W., Burns, G., Finlayson, K., Greet, P., Lowe, R., and Williams, P.:
Hydroxyl (6/2) airglow emission intensity ratios for rotational temperature
determination, Ann. Geophys., 18, 1293–1303, 2000.
French, W. J. R., Mulligan, F. J., and Klekociuk, A. R.: Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends, Atmos. Chem. Phys., 20, 6379–6394, https://doi.org/10.5194/acp-20-6379-2020, 2020.
Gao, H., Xu, J., Ward, W., Smith, A. K., and Chen, G. M.: Double-layer
structure of OH dayglow in the mesosphere, J. Geophys. Res.-Space, 120, 5778–5787, https://doi.org/10.1002/2015ja021208, 2015.
Gault, W., Brown, S., Moise, A., Liang, D., Sellar, G., Shepherd, G., and
Wimperis, J.: ERWIN: an E-region wind interferometer, Appl. Opt., 35,
2913–2922, 1996.
Good, R. E.: Determination of atomic oxygen density from rocket borne
measurement of hydroxyl airglow, Planet. Space Sci., 24, 389–395, https://doi.org/10.1016/0032-0633(76)90052-0, 1976.
Greet, P. A., French, W. J. R., Burns, G. B., Williams, P. F. B., Lowe, R.
P., and Finlayson, K.: OH(6-2) spectra and rotational temperature
measurements at Davis, Antarctica, Ann. Geophys.-Atm. Hydr., 16, 77–89, https://doi.org/10.1007/s00585-997-0077-3, 1998.
Grygalashvyly, M.: Several notes on the OH* layer, Ann. Geophys., 33, 923–930, 2015.
Grygalashvyly, M., Sonnemann, G., Lübken, F. J., Hartogh, P., and
Berger, U.: Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res.-Atmos., 119, 12391–12419, 2014.
Hannawald, P., Schmidt, C., Wüst, S., and Bittner, M.: A fast SWIR imager for observations of transient features in OH airglow, Atmos. Meas. Tech., 9, 1461–1472, https://doi.org/10.5194/amt-9-1461-2016, 2016.
Hannawald, P., Schmidt, C., Sedlak, R., Wüst, S., and Bittner, M.: Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations, Atmos. Meas. Tech., 12, 457–469, https://doi.org/10.5194/amt-12-457-2019, 2019.
Harlander, J. M., Roesler, F. L., Cardon, J. G., Englert, C. R., and Conway,
R. R.: Shimmer: a spatial heterodyne spectrometer for remote sensing of
Earth'middle atmosphere, Appl. Opt., 41, 1343–1352, 2002.
Harrison, A. and Kendall, D.: Airglow hydroxyl intensity measurements
, Planet. Space Sci., 21, 1731–1741,
1973.
Heaps, H. and Herzberg, G.: Intensity distribution in the rotation-vibration
spectrum of the OH molecule, Z. Phys., 133, 48–64, 1952.
Hecht, J., Walterscheid, R., Sivjee, G., Christensen, A., and Pranke, J.:
Observations of wave-driven fluctuations of OH nightglow emission from
Sondre Stromfjord, Greenland, J. Geophys. Res.-Space, 92, 6091–6099, 1987.
Hecht, J. H.: Instability layers and airglow imaging, Rev. Geophys.,
42, RG1001, https://doi.org/10.1029/2003RG000131, 2004.
Hecht, J. H., Fritts, D. C., Gelinas, L. J., Rudy, R. J., Walterscheid, R. L., and Liu, A. Z.: Kelvin-Helmholtz billow interactions and instabilities in the mesosphere over the Andes Lidar Observatory: 1. Observations, J. Geophys. Res.-Atmos., 126, e2020JD033414 https://doi.org/10.1029/2020JD033414, 2021.
Herzberg, G.: The atmospheres of the planets, J. Roy. Astro. Soc. Can., 45, 100, https://articles.adsabs.harvard.edu/pdf/1951JRASC..45..100H (last access: 12 January 2023), 1951.
Inchin, P. A., Snively, J. B., Williamson, A., Melgar, D., Guerrero, J. A.,
and Zettergren, M. D.: Mesopause airglow disturbances driven by nonlinear
infrasonic acoustic waves generated by large earthquakes, J. Geophys. Res.-Space, 125, e2019JA027628, https://doi.org/10.1029/2019JA027628, 2020.
Jacobi, C., Arras, C., Kürschner, D., Singer, W., Hoffmann, P., and
Keuer, D.: Comparison of mesopause region meteor radar winds, medium
frequency radar winds and low frequency drifts over Germany, Adv. Space Res., 43, 247–252, https://doi.org/10.1016/j.asr.2008.05.009, 2009.
Khomich, V. Y., Semenov, A. I., and Shefov, N. N.: Airglow as an indicator
of upper atmospheric structure and dynamics, Springer Science & Business
Media, ISBN 9783540758327, 2008.
Krassovsky, V., Shefov, N., and Yarin, V.: Atlas of the airglow spectrum
3000–12400 Å, Planet. Space Sci., 9, 883–915, 1962.
Krassovsky, V. I.: On the mechanism of the night sky luminescence, Doklady
Akademii Nauk SSSR, 395–398, 1951.
Krassovsky, V. I.: Chemistry of the upper atmosphere, Space Research
Conference, Space Research III, edited by: Priester, W., Proceedings of the Third International Space Science Symposium, Washington, D.C., USA, 2–8 May, 96–116, 1963.
Krassovsky, V. I.: Infrasonic variations of OH emission in the upper
atmosphere, Ann. Geophys., 28, 739–746, 1972.
Kristl, J., Esplin, M., Hudson, T., Taylor, M., and Siefring, C. L.:
Preliminary data on variations of OH airglow during the Leonid 1999 meteor
storm, Earth, Moon and Planets, 82, 525–534, 2000.
Kristoffersen, S. K., Ward, W. E., Brown, S., and Drummond, J. R.: Calibration and validation of the advanced E-Region Wind Interferometer, Atmos. Meas. Tech., 6, 1761–1776, https://doi.org/10.5194/amt-6-1761-2013, 2013.
Kyrölä, E., Tamminen, J., Leppelmeier, G., Sofieva, V., Hassinen,
S., Bertaux, J., Hauchecorne, A., Dalaudier, F., Cot, C., Korablev, O.,
Fanton d'Andon, O., Snoejj, P., Koopmann, R., Saavedra, L., Fraisse, R.,
Fussen, D., and Vanhellemont, F.: GOMOS on Envisat: An overview, Adv. Space Res., 33, 1020–1028, 2004.
Lai, C., Xu, J. Y., Yue, J., Yuan, W., Liu, X., Li, W., and Li, Q. Z.:
Automatic extraction of gravity waves from all-sky airglow image based on
machine learning, Remote Sens., 11, 1516, https://doi.org/10.3390/rs11131516, 2019.
Langille, J. A., Ward, W. E., Scott, A., and Arsenault, D. L.: Measurement
of two-dimensional Doppler wind fields using a field widened Michelson
interferometer, Appl. Opt., 52, 1617–1628, 2013.
Le Du, T., Simoneau, P., Keckhut, P., Hauchecorne, A., and Le Pichon, A.: Investigation of infrasound signatures from microbaroms using OH airglow and ground-based microbarometers. Adv. Space Res., 65, 902–908, https://doi.org/10.1016/j.asr.2019.11.026, 2020.
Li, T., She, C. Y., Williams, B. P., Yuan, T., Collins, R. L., Kieffaber,
L. M., and Peterson, A. W.: Concurrent OH imager and
sodium temperature/wind lidar observation of localized ripples
over northern Colorado, J. Geophys. Res.-Atmos., 110, D13110,
https://doi.org/10.1029/2004JD004885, 2005.
Li, J., Li, T., Dou, X., Fang, X., Cao, B., She, C.-Y., Nakamura, T.,
Manson, A., Meek, C., and Thorsen, D.: Characteristics of ripple
structures revealed in OH airglow images, J. Geophys. Res.-Space, 122, 3748–3759, https://doi.org/10.1002/2016JA023538, 2017.
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH
nightglow emission, Geophys. Res. Lett., 33, L09805, https://doi.org/10.1029/2005gl025297, 2006.
Llewellyn, E., Degenstein, D., Lloyd, N., Gattinger, R., Petelina, S.,
McDade, I., Haley, C., Solheim, B., von Savigny, C., and Sioris, C.: First
Results from the OSIRIS Instrument on-board Odin, Sodankylä Geophysical
Observatory Publications, 92, 41–47, 2003.
Llewellyn, E. J., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L.,
Petelina, S. V., Bourassa, A. E., Wiensz, J. T., Ivanov, E. V., McDade, I.
C., Solheim, B. H., McConnell, J. C., Haley, C. S., Savigny, C. v., Sioris,
C. E., McLinden, C. A., Griffioen, E., Kaminski, J., Evans, W. F., Puckrin,
E., Strong, K., Wehrle, V., Hum, R. H., Kendall, D. J., Matsushita, J.,
Murtagh, D. P., Brohede, S., Stegman, J., Witt, G., Barnes, G., Payne, W.
F., Piché, L., Smith, K., Warshaw, G., Deslauniers, D.-L., Marchand, P.,
Richardson, E. H., King, R. A., Wevers, I., McCreath, W., Kyrölä,
E., Oikarinen, L., Leppelmeier, G. W., Auvinen, H., Mégie, G.,
Hauchecorne, A., Lefèvre, F., Nöe, J. d. L., Ricaud, P., Frisk, U.,
Sjoberg, F., Schéele, F. v., and Nordh, L.: The OSIRIS instrument on the
Odin spacecraft, Can. J. Phys., 82, 411–422, https://doi.org/10.1139/p04-005, 2004.
López-González, M. J., García-Comas, M., Rodríguez, E.,
López-Puertas, M., Shepherd, M. G., Shepherd, G. G., Sargoytchev, S.,
Aushev, V. M., Smith, S. M., Mlynczak, M. G., Russell, J. M., Brown, S.,
Cho, Y. M., and Wiens, R. H.: Ground-based mesospheric temperatures at
mid-latitude derived from O2 and OH airglow SATI data: Comparison with SABER
measurements, J. Atmos. Sol.-Terr. Phy., 69,
2379–2390, https://doi.org/10.1016/j.jastp.2007.07.004, 2007.
López-González, M. J., García-Comas, M., Rodríguez, E.,
López-Puertas, M., Olivares, I., Jeronimo-Zafra, J. M., Robles-Munoz, N.
F., Perez-Silvente, T., Shepherd, M. G., Shepherd, G. G., and Sargoytchev,
S.: Gravity wave activity in the middle atmosphere from SATI airglow
observations at northern mid-latitude: Seasonal variation and comparison
with tidal and planetary wave-like activity, J. Atmos.
So.-Terr. Phy., 206, 105329, https://doi.org/10.1016/j.jastp.2020.105329, 2020.
Lowe, R. P., LeBlanc, L. M., and Gilbert, K. L.: WINDII/UARS observation of
twilight behaviour of the hydroxyl airglow, at mid-latitude equinox, J.
Atmos. Terr. Phys., 58, 1863–1869, https://doi.org/10.1016/0021-9169(95)00178-6, 1996.
Lübken, F. J. and von Zahn, U.: Thermal structure of the mesopause
region at polar latitudes, J. Geophys. Res.-Atmos., 96,
20841–20857, https://doi.org/10.1029/91jd02018, 1991.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell III, J.
M.: SABER observations of the OH Meinel airglow variability near the
mesopause, J. Geophys. Res.-Space, 111, A10S05, https://doi.org/10.1029/2005JA011451, 2006.
Marshall, R. A., Smith, S., Baumgardner, J., and Chakrabarti, S.: Continuous
ground-based multiwavelength airglow measurements, J. Geophys. Res.-Space, 116, A11304, https://doi.org/10.1029/2011JA016901, 2011.
Meinel, A. B.: OH emission bands in the spectrum of the night sky II,
Astrophys. J., 112, 120, https://adsabs.harvard.edu/pdf/1950ApJ...112..120M (last access: 12 January 2023), 1950a.
Meinel, A. B.: OH emission bands in the spectrum of the night sky I,
Astrophys. J., 111, 555, https://adsabs.harvard.edu/pdf/1950ApJ...111..555M (last access: 12 January 2023), 1950b.
Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., and
Hawkins, J. D.: Suomi satellite brings to light a unique frontier of
nighttime environmental sensing capabilities, P. Natl.
Acad. Sci. USA, 109, 15706–15711, 2012.
Miller, S. D., Straka, W. C., Yue, J., Smith, S. M., Alexander, M. J.,
Hoffmann, L., Setvák, M., and Partain, P. T.: Upper atmospheric gravity
wave details revealed in nightglow satellite imagery, P. Natl. Acad. Sci. USA, 112, E6728–E6735, 2015.
Misawa, K. and Takeuchi, I.: Ground observation of the O2 (0-1) atmospheric
band at 8645 Å and the [OI] 5577-Å line, J. Geophys. Res., 82,
2410–2412, 1977.
Misawa, K. and Takeuchi, I.: Correlations among O2 (0–1) atmospheric band,
OH (8–3) band and [OI] 5577 Å line and among P1 (2), P1 (3) and P1 (4)
lines of OH (8–3) band, J. Atmos. Terr. Phys., 40, 421–428, 1978.
Moreels, G., Megie, G., Jones, A. V., and Gattinger, R. L.: Oxygen-hydrogen
atmospheric model and its application to OH-emission problem, J. Atmos.
Terr. Phys., 39, 551–570, https://doi.org/10.1016/0021-9169(77)90065-4, 1977.
Mulligan, F., Horgan, D., Galligan, J., and Griffin, E.: Mesopause
temperatures and integrated band brightnesses calculated from airglow OH
emissions recorded at Maynooth (53.2∘ N, 6.4∘ W) during
1993, J. Atmos. Terr. Phys., 57, 1623–1637, 1995.
Mulligan, F., Dyrland, M., Sigernes, F., and Deehr, C.: Inferring hydroxyl
layer peak heights from ground-based measurements of OH(6-2) band integrated
emission rate at Longyearbyen (78∘ N, 16∘ E), Ann. Geophys., 27, 4197–4205, 2009.
Nappo, C. J.: An introduction to atmospheric gravity waves, Academic Press, ISBN 9780123852236, 2013.
Nee, J. B., Tsai, S. D., Peng, T. H., Hsu, R. R., Chen, A. B. C., Zhang, S.
P., Huang, T. Y., Rajesh, P. K., Liu, J. Y., Frey, H. U., and Mende, S. B.:
OH airglow and equatorial variations observed by ISUAL Instrument on board
the FORMOSAT 2 satellite, Terr. Atmos. Ocean. Sci., 21,
985–995, https://doi.org/10.3319/Tao.2010.03.12.01(Aa), 2010.
Nicolet, M.: Aeronomic chemistry of ozone, Planet. Space Sci., 37,
1621–1652, https://doi.org/10.1016/0032-0633(89)90150-5, 1989.
Nicovich, J. M. and Wine, P. H.: Temperature-dependence of the O+ HO2 Rate Coefficient, J. Phys. Chem., 91, 5118–5123, https://doi.org/10.1021/j100303a049, 1987.
Noll, S., Kausch, W., Kimeswenger, S., Barden, M., Jones, A., Modigliani,
A., Szyszka, C., and Taylor, J.: Skycorr: A general tool for spectroscopic
sky subtraction, Journal of Astronomy and Astrophysics, 567, A25, https://doi.org/10.1051/0004-6361/201423908, 2014.
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and Jones, A. M.: Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles, Atmos. Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, 2016.
Noll, S., Kimeswenger, S., Proxauf, B., Unterguggenberger, S., Kausch, W.,
and Jones, A. M.: 15 years of VLT/UVES OH intensities and temperatures in
comparison with TIMED/SABER data, J. Atmos. Sol.-Terr. Phy., 163, 54–69, https://doi.org/10.1016/j.jastp.2017.05.012, 2017.
Noll, S., Winkler, H., Goussev, O., and Proxauf, B.: OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines, Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, 2020.
Noxon, J.: The latitude dependence of OH rotational temperature in the night
airglow, J. Geophys. Res., 69, 4087–4092, 1964.
Offermann, D., Gusev, O., Donner, M., Forbes, J. M., Hagan, M., Mlynczak, M.
G., Oberheide, J., Preusse, P., Schmidt, H., and Russell, J. M.: Relative
intensities of middle atmosphere waves, J. Geophys. Res.-Atmos., 114, D06110, https://doi.org/10.1029/2008jd010662, 2009.
Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I., Lapenna, E.,
Mucciarelli, A., Baffa, C., Biliotti, V., and Carbonaro, L.: Lines and
continuum sky emission in the near infrared: observational constraints from
deep high spectral resolution spectra with GIANO-TNG, Astron. Astrophys.,
581, A47, https://doi.org/10.1051/0004-6361/201526291, 2015.
Pallamraju, D., Baumgardner, J., and Chakrabarti, S.: HIRISE: a ground-based
high-resolution imaging spectrograph using echelle grating for measuring
daytime airglow/auroral emissions, J. Atmos. Sol.-Terr. Phy., 64, 1581–1587, https://doi.org/10.1016/S1364-6826(02)00095-0, 2002.
Pautet, P. D., Taylor, M. J., Pendleton, W. R., Zhao, Y., Yuan, T., Esplin,
R., and McLain, D.: Advanced mesospheric temperature mapper for
high-latitude airglow studies, Appl. Opt., 53, 5934–5943,
https://doi.org/10.1364/AO.53.005934, 2014.
Pautet, P. D., Taylor, M. J., Eckermann, S., and Criddle, N.: Regional
distribution of mesospheric small-scale gravity waves during DEEPWAVE,
J. Geophys. Res.-Atmos., 124, 7069–7081, 2019.
Pendleton Jr, W., Espy, P., and Hammond, M.: Evidence for
non-local-thermodynamic-equilibrium rotation in the OH nightglow, J. Geophys. Res.-Space, 98, 11567–11579, 1993.
Pilger, C., Schmidt, C., and Bittner, M.: Statistical analysis of infrasound
signatures in airglow observations: Indications for acoustic resonance,
J. Atmos. Sol.-Terr. Phy., 93, 70–79, https://doi.org/10.1016/j.jastp.2012.11.011, 2013a.
Pilger, C., Schmidt, C., Streicher, F., Wüst, S., and Bittner, M.: Airglow observations of orographic, volcanic and meteorological infrasound signatures, J. Atmos. Sol.-Terr. Phys., 104, 55–66, https://doi.org/10.1016/j.jastp.2013.08.008, 2013b.
Rajesh, P., Liu, J., Chiang, C., Chen, A., Chen, W., Su, H.-T., Hsu, R.-R.,
Lin, C., Hsu, M. L., and Yee, J.: First results of the limb imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper Atmospheric
Lightnings, J. Geophys. Res.-Space, 114, A10302, https://doi.org/10.1029/2009JA014087, 2009.
Rauthe, M., Gerding, M., Höffner, J., and Lübken, F. J.: Lidar
temperature measurements of gravity waves over Kühlungsborn
(54∘ N) from 1 to 105 km: A winter-summer comparison, J. Geophys.
Res., 111, D24108, https://doi.org/10.1029/2006jd007354, 2006.
Reisin, E. R. and Scheer, J.: Vertical propagation of gravity waves
determined from zenith observations of airglow, Adv. Space Res.,
27, 1743–1748, 2001.
Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I., Knieling, P., Koppmann, R., Shiokawa, K., Lowe, R. P., López-González, M. J., Rodríguez, E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. J., French, W. J. R., Eichmann, K. U., Burrows, J. P., and von Savigny, C.:
Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC). J. Atmos. Sol.-Terr. Phys. 119, 71–82, https://doi.org/10.1016/j.jastp.2014.07.002, 2014.
Richter, H., Buchbender, C., Güsten, R., Higgins, R., Klein, B.,
Stutzki, J., Wiesemeyer, H., and Hübers, H.-W. J. C. E.: Direct
measurements of atomic oxygen in the mesosphere and lower thermosphere using
terahertz heterodyne spectroscopy, Communications Earth and Environment, 2,
1–9, https://doi.org/10.1038/s43247-020-00084-5, 2021.
Roach, F. and Gordon, J. L.: The Night Airglow Or Nightglow, in: The Light
of the Night Sky, Springer, 47–81, ISBN 9027702934, 1973.
Rodrigo, R., Lopez-Gonzalez, M., and Lopez-Moreno, J.: Variability of the
neutral mesospheric and lower thermospheric composition in the diurnal
cycle, Planet. Space Sci., 39, 803–820, 1991.
Rourke, S., Mulligan, F. J., French, W. J. R., and Murphy, D. J.: A climatological study of short‐period gravity waves and ripples at Davis Station, Antarctica (68∘ S, 78∘ E), during the (austral winter February–October) period 1999–2013, J. Geophys. Res.-Atmos., 122, 11388–11404, https://doi.org/10.1002/2017JD026998, 2017.
Rousselot, P., Lidman, C., Cuby, J. G., Moreels, G., and Monnet, G.:
Night-sky spectral atlas of OH emission lines in the near-infrared,
Astron. Astrophys., 354, 1134–1150, 2000.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr, J. J., and
Esplin, R. W.: Overview of the SABER experiment and preliminary calibration
results, P. Soc. Photo.-Opt. Ins., 3756, 277–288, 1999.
Sargoytchev, S. I., Brown, S., Solheim, B. H., Cho, Y.-M., Shepherd, G. G.,
and López-González, M. J.: Spectral airglow temperature imager
(SATI): a ground-based instrument for the monitoring of mesosphere
temperature, Appl. Opt., 43, 5712–5721, 2004.
Scheer, J.: Programmable tilting filter spectrometer for studying gravity
waves in the upper atmosphere, Appl. Opt., 26, 3077–3082, 1987.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based spectrometer
equipped with an InGaAs array for routine observations of OH(3-1) rotational
temperatures in the mesopause region, J. Atmos. Sol.-Terr. Phy., 102, 125–139, https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe,
U. P., and Bittner, M.: Derivation of vertical wavelengths of gravity waves
in the MLT-region from multispectral airglow observations, J. Atmos. Sol.-Terr. Phy., 173, 119–127, https://doi.org/10.1016/j.jastp.2018.03.002, 2018.
Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., and Bittner, M.: High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer, Atmos. Meas. Tech., 9, 5955–5963, https://doi.org/10.5194/amt-9-5955-2016, 2016.
Sedlak, R., Zuhr, A., Schmidt, C., Wüst, S., Bittner, M., Didebulidze, G. G., and Price, C.: Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region, Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, 2020.
Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., Bittner, M., and Stanič, S.: Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia, Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, 2021.
She, C. Y., Yu, J. R., and Chen, H.: Observed thermal structure of a
midlatitude mesopause, Geophys. Res. Lett., 20, 567–570, https://doi.org/10.1029/93gl00808, 1993.
She, C. Y., Chen, S., Hu, Z., Sherman, J., Vance, J. D., Vasoli, V., White, M. A., Yu, J., and Krueger,
D. A.: Eight-year climatology of nocturnal temperature and sodium density in the
mesopause region (80 to 105 km) over Fort Collins, CO (41∘ N, 105∘ W), Geophys. Res. Lett., 27, 3289–3292, https://doi.org/10.1029/2000GL003825, 2000.
Sheese, P., Llewellyn, E., Gattinger, R., Bourassa, A., Degenstein, D.,
Lloyd, N., and McDade, I.: Mesopause temperatures during the polar
mesospheric cloud season, Geophys. Res. Lett., 38, L11803, https://doi.org/10.1029/2011GL047437, 2011.
Sheese, P. E., Llewellyn, E. J., Gattinger, R. L., and Strong, K.: OH Meinel
band nightglow profiles from OSIRIS observations, J. Geophys. Res.-Atmos., 119, 11417–11428, https://doi.org/10.1002/2014jd021617, 2014.
Shemansky, D. and Jones, A. V.: New measurements of the night airglow
spectrum in the 1.5 µ region, J. Atmos. Terr. Phys., 22, 166–175, 1961.
Shepherd, G. G., Thuillier, G., Gault, W. A., Solheim, B. H., Hersom, C.,
Alunni, J. M., Brun, J. F., Brune, S., Charlot, P., Cogger, L. L.,
Desaulniers, D. L., Evans, W. F. J., Gattinger, R. L., Girod, F., Harvie,
D., Hum, R. H., Kendall, D. J. W., Llewellyn, E. J., Lowe, R. P., Ohrt, J.,
Pasternak, F., Peillet, O., Powell, I., Rochon, Y., Ward, W. E., Wiens, R.
H., and Wimperis, J.: WINDII, the Wind Imaging Interferometer on the
Upper-Atmosphere Research Satellite, J. Geophys. Res.-Atmos., 98, 10725–10750, https://doi.org/10.1029/93jd00227, 1993.
Shepherd, G. G., Thuillier, G., Cho, Y. M., Duboin, M. L., Evans, W. F.,
Gault, W., Hersom, C., Kendall, D., Lathuillere, C., Lowe, R., McDade, I.
C., Rochon, Y., Shepherd, M., Solheim, B. H., Wang, D., and Ward, W.: The
wind imaging interferometer (WINDII) on the upper atmosphere research
satellite: a 20 year perspective, Rev. Geophys., 50, RG2007, https://doi.org/10.1029/2012RG000390, 2012.
Shepherd, M. G., Meek, C. E., Hocking, W. K., Hall, C. M., Partamies, N., Sigernes, F., Manson, A. H., and Ward, W. E.: Multi-instrument study of the
mesosphere-lower thermosphere dynamics at 80∘ N during the
major SSW in January 2019, 2020.
Shiokawa, K., Kadota, T., Ejiri, M. K., Otsuka, Y., Katoh, Y., Satoh, M.,
and Ogawa, T.: Three-channel imaging Fabry–Perot interferometer for
measurement of mid-latitude airglow, Appl. Opt., 40, 4286–4296, 2001.
Siefring, C. L., Morrill, J. S., Sentman, D. D., and Heavner, M. J.:
Simultaneous near-infrared and visible observations of sprites and
acoustic-gravity waves during the EXL98 campaign, J. Geophys. Res.-Space, 115, A00E57, https://doi.org/10.1029/2009JA014862, 2010.
Sigernes, F., Shumilov, N., Deehr, C., Nielsen, K., Svenøe, T., and
Havnes, O.: Hydroxyl rotational temperature record from the auroral station
in Adventdalen, Svalbard (78∘ N, 15∘ E), J. Geophys. Res.-Space, 108, 1342, https://doi.org/10.1029/2001JA009023, 2003.
Silber, I., Price, C., Schmidt, C., Wüst, S., Bittner, M., and Pecora,
E.: First ground-based observations of mesopause temperatures above the
Eastern-Mediterranean Part I: Multi-day oscillations and tides, J. Atmos. Sol.-Terr. Phy., 155, 95–103, 2017.
Sivjee, G. and Hamwey, R.: Temperature and chemistry of the polar mesopause
OH, J. Geophys. Res.-Space, 92, 4663–4672, 1987.
Sivjee, G. G.: Airglow hydroxyl emissions, Planet. Space Sci., 40, 235–242, https://doi.org/10.1016/0032-0633(92)90061-R, 1992.
Smette, A., Sana, H., Noll, S., Horst, H., Kausch, W.,
Kimeswenger, S., Barden, M., Szyszka, C., Jones, A., and Gallenne, A.:
Molecfit: A general tool for telluric absorption correction – I. Method and
application to ESO instruments, Astron. Astrophys., 576, A77, https://doi.org/10.1051/0004-6361/201423932, 2015.
Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.: Temporal
variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res.-Atmos., 115, D18309, https://doi.org/10.1029/2009JD013434, 2010.
Snively, J. B., Pasko, V. P., and Taylor, M. J.: OH and OI airglow layer
modulation by ducted short-period gravity waves: Effects of trapping
altitude, J. Geophys. Res.-Space, 115, A11311, https://doi.org/10.1029/2009ja015236, 2010.
Sridharan, R., Modl, N. K., Raju, D. P., Narayanan, R., Pant, T. K., Taori,
A., and Chakrabarty, D.: A multiwavelength daytime photometer - a new tool
for the investigation of atmospheric processes, Meas. Sci. Technol., 9, 585–591, https://doi.org/10.1088/0957-0233/9/4/005, 1998.
Stehr, J., Knieling, P., Olschewski, F., Mantel, K., Kaufmann, M., and
Koppmann, R.: GRIPS-HI, a novel spectral imager for ground based
measurements of mesopause temperatures, tm – Technisches Messen, 88,
655–660, https://doi.org/10.1515/teme-2021-0043, 2021.
Suzuki, H., Shiokawa, K., Tsutsumi, M., Nakamura, T., and Taguchi, M.:
Atmospheric gravity waves identified by ground-based observations of the
intensity and rotational temperature of OH airglow, Polar Science, 2, 1–8,
2008.
Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., Kubota, M., Tsutsumi, M.,
Nakamura, T., and Fritts, D. C.: Gravity wave momentum flux in the upper
mesosphere derived from OH airglow imaging measurements, Earth Planets
Space, 59, 421–428, https://doi.org/10.1186/Bf03352703, 2007.
Swenson, G. and Espy, P. J.: Observations of 2-dimensional airglow structure
and Na density from the ALOHA, 9 October 1993 “storm flight”, Geophys. Res. Lett., 22, 2845–2848, 1995.
Swenson, G. R. and Gardner, C. S.: Analytical models for the responses of
the mesospheric OH* and Na layers to atmospheric gravity waves, J. Geophys. Res.-Atmos., 103, 6271–6294, 1998.
Swenson, G. R. and Liu, A. Z.: A model for calculating acoustic gravity wave
energy and momentum flux in the mesosphere from OH airglow, Geophys. Res.
Lett., 25, 477–480, https://doi.org/10.1029/98gl00132, 1998.
Takahashi, H., Batista, P. P., Sahai, Y., and Clemesha, B. R.: Atmospheric
wave propagations in the mesopause region observed by
the OH (8, 3) band, NaD, O2A (8645Å) band and OI 5577 Å
nightglow emissions, Planet. Space Sci., 33, 381–384, https://doi.org/10.1016/0032-0633(85)90081-9, 1985.
Tang, J., Liu, A., and Swenson, G.: High frequency gravity -waves observed
in OH airglow at Starfire Optical Range, NM; seasonal variations in momentum
flux, GRL, 29, 27-1–27-4, 2002.
Taylor, M. J.: A review of advances in imaging techniques for measuring
short period gravity waves in the mesosphere and lower thermosphere, Middle
and Upper Atmospheres: Small Scale Structures and Remote Sens., 19,
667–676, https://doi.org/10.1016/S0273-1177(97)00161-0, 1997.
Taylor, M. J., Bishop, M. B., and Taylor, V.: All-sky measurements
of short period gravity waves imaged in the OI(557.7 nm),
Na(589.2 nm) and near infrared OH and O2(0,1) nightglow emissions
during the ALOHA-93 campaign, Geophys. Res. Lett., 22,
2833–2836, https://doi.org/10.1029/95GL02946, 1995.
Thorne, A. P.: Emission and absorption of line radiation, in:
Spectrophysics, Springer, 286–317, https://doi.org/10.1007/978-94-009-1193-2_11, 1988.
Vadas, S. L., Fritts, D. C., and Alexander, M. J.: Mechanism for the generation of secondary waves in wave breaking regions, J. Atmos. Sciences, 60, 194–214, https://doi.org/10.1175/1520-0469(2003)060<0194:MFTGOS>2.0.CO;2, 2003.
Van Zandt, T. E.: A model for gravity wave spectra observed by Doppler
sounding systems, Radio Sci., 20, 1323–1330, 1985.
Vargas, F., Swenson, G., and Liu, A.: Evidence of high frequency gravity wave forcing on the meridional residual circulation at the mesopause region, Adv. Space Res., 56, 1844–1853, https://doi.org/10.1016/j.asr.2015.07.040, 2015.
von Savigny, C.: Variability of OH(3–1) emission altitude from 2003 to
2011: Long-term stability and universality of the emission rate–altitude
relationship, J. Atmos. Sol.-Terr. Phy., 127, 120–128, https://doi.org/10.1016/j.jastp.2015.02.001, 2015.
von Savigny, C. and Lednyts' kyy, O.: On the relationship between atomic
oxygen and vertical shifts between OH Meinel bands originating from
different vibrational levels, Geophys. Res. Lett., 40, 5821–5825, 2013.
von Savigny, C., Eichmann, K. U., Llewellyn, E., Bovensmann, H., Burrows,
J., Bittner, M., Höppner, K., Offermann, D., Taylor, M. J., and Zhao,
Y.: First near-global retrievals of OH rotational temperatures from
satellite-based Meinel band emission measurements, Geophys. Res. Lett., 31, L15111, https://doi.org/10.1029/2004GL020410, 2004.
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12, 8813–8828, https://doi.org/10.5194/acp-12-8813-2012, 2012.
von Zahn, U., Fricke, K., Gerndt, R., and Blix, T.: Mesospheric temperatures
and the OH layer height as derived from ground-based lidar and OH*
spectrometry, J. Atmos. Terr. Phys., 49, 863–869, 1987.
von Zahn, U., Hoffner, J., Eska, V., and Alpers, M.: The mesopause altitude:
Only two distinctive levels worldwide?, Geophys. Res. Lett., 23, 3231–3234,
1996.
Wachter, P., Schmidt, C., Wüst, S., and Bittner, M.: Spatial gravity
wave characteristics obtained from multiple OH(3–1) airglow temperature
time series, J. Atmos. Sol.-Terr. Phy., 135, 192–201, 2015.
Wang, Z., Huang, M., Sun, Y., Tao, T., Qian, L., Zhang, G., Zhao, B., Han,
W., Wang, G., and Zhao, Y.: Near-Earth space balloon-based multi-band
airglow imager optic design, Appl. Opt., 60, 8057–8068, 2021.
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H.
M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D.
A., Holden, J. R., Lau, G. K. K., Livesey, N. J., Manney, G. L., Pumphrey,
H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S.,
Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A.,
Chandra, K. M., Chavez, M. C., Chen, G. S., Chudasama, B. V., Dodge, R.,
Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y. B., Knosp, B. W.,
LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N.
C., Pukala, D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C.,
Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb
Sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/Tgrs.2006.873771, 2006.
Wiens, R., Moise, A., Brown, S., Sargoytchev, S., Peterson, R., Shepherd,
G., Lopez-Gonzalez, M., Lopez-Moreno, J., and Rodrigo, R.: SATI: A spectral
airglow temperature imager, Adv. Space Res., 19, 677–680, 1997.
Wolff, M. M.: A new attack on height measurement of the nightglow by ground
triangulation, J. Geophys. Res., 71, 2743–2748, https://doi.org/10.1029/JZ071i011p02743,
1966.
Wüst, S. and Bittner, M.: Non-linear resonant wave-wave interaction
(triad): Case studies based on rocket data and first application to
satellite data, J. Atmos. Sol.-Terr. Phy., 68, 959–976, 2006.
Wüst, S., Wendt, V., Schmidt, C., Lichtenstern, S., Bittner, M., Yee, J.
H., Mlynczak, M. G., and Russell, J. M.: Derivation of gravity wave
potential energy density from NDMC measurements, J. Atmos. Sol.-Terr. Phy., 138, 32–46, https://doi.org/10.1016/j.jastp.2015.12.003, 2016.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH* layer height, Atmos. Meas. Tech., 10, 4895–4903, https://doi.org/10.5194/amt-10-4895-2017, 2017.
Wüst, S., Offenwanger, T., Schmidt, C., Bittner, M., Jacobi, C., Stober, G., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer, Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, 2018.
Wüst, S., Schmidt, C., Hannawald, P., Bittner, M., Mlynczak, M. G., and Russell III, J. M.: Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming, Atmos. Chem. Phys., 19, 6401–6418,
https://doi.org/10.5194/acp-19-6401-2019, 2019.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH*-airglow layer height at low and midlatitudes, Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, 2020.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow
observations to investigate hydroxyl emission mechanisms in the mesopause
region, J. Geophys. Res.-Atmos., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Xu, S., Yue, J., Xue, X., Vadas, S. L., Miller, S. D., Azeem, I., Straka
III, W., Hoffmann, L., and Zhang, S.: Dynamical coupling between hurricane
matthew and the middle to upper atmosphere via gravity waves, J. Geophys. Res.-Space, 124, 3589–3608, 2019.
Yue, J., Miller, S. D., Hoffmann, L., and Straka III, W. C.: Stratospheric
and mesospheric concentric gravity waves over tropical cyclone Mahasen:
Joint AIRS and VIIRS satellite observations, J. Atmos.
Sol.-Terr. Phys., 119, 83–90, 2014.
Yue, J., Perwitasari, S., Xu, S., Hozumi, Y., Nakamura, T., Sakanoi, T.,
Saito, A., Miller, S. D., Straka, W., and Rong, P.: Preliminary
dual-satellite observations of atmospheric gravity waves in airglow,
Atmosphere, 10, 650, https://doi.org/10.3390/atmos10110650,
2019.
Zhou, X., Holton, J. R., Mullendore, G. L.: Forcing of secondary waves by breaking of gravity waves in the mesosphere. J. Geophys. Res.-Atmos., 107, ACL 3-1–ACL 3-7, https://doi.org/10.1029/2001JD001204, 2002.
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced...
Altmetrics
Final-revised paper
Preprint