Articles | Volume 23, issue 24
https://doi.org/10.5194/acp-23-15609-2023
https://doi.org/10.5194/acp-23-15609-2023
Research article
 | 
20 Dec 2023
Research article |  | 20 Dec 2023

Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment

Dario Sperber and Klaus Gierens

Related authors

Kinematic properties of regions that can involve persistent contrails
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3520,https://doi.org/10.5194/egusphere-2024-3520, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Machine learning for improvement of upper tropospheric relative humidity in ERA5 weather model data
Ziming Wang, Luca Bugliaro, Klaus Gierens, Michaela I. Hegglin, Susanne Rohs, Andreas Petzold, Stefan Kaufmann, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2012,https://doi.org/10.5194/egusphere-2024-2012, 2024
Short summary
How well can persistent contrails be predicted? An update
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024,https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
On the interpretation of upper-tropospheric humidity based on a second-order retrieval from infrared radiances
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 19, 3733–3746, https://doi.org/10.5194/acp-19-3733-2019,https://doi.org/10.5194/acp-19-3733-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025,https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025,https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024,https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024,https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary

Cited articles

Baumgartner, M. and Spichtinger, P.: Homogeneous nucleation from an asymptotic point of view, Theor. Comp. Fluid Dyn., 33, 83–106, 2019. a
Corti, T. and Peter, T.: A simple model for cloud radiative forcing, Atmos. Chem. Phys., 9, 5751–5758, https://doi.org/10.5194/acp-9-5751-2009, 2009. a
Dekoutsidis, G., Groß, S., Wirth, M., Krämer, M., and Rolf, C.: Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air, Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, 2023. a
Dietmüller, S., Matthes, S., Dahlmann, K., Yamashita, H., Simorgh, A., Soler, M., Linke, F., Lührs, B., Meuser, M. M., Weder, C., Grewe, V., Yin, F., and Castino, F.: A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0, Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, 2023. a
Dowling, D. and Radke, L.: A summary of the physical properties of cirrus clouds, J. Appl. Meteorol., 29, 970–978, 1990. a
Download
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Altmetrics
Final-revised paper
Preprint