Articles | Volume 23, issue 24
https://doi.org/10.5194/acp-23-15609-2023
https://doi.org/10.5194/acp-23-15609-2023
Research article
 | 
20 Dec 2023
Research article |  | 20 Dec 2023

Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment

Dario Sperber and Klaus Gierens

Related authors

How well can persistent contrails be predicted? – An update
Sina Maria Hofer, Klaus Martin Gierens, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-385,https://doi.org/10.5194/egusphere-2024-385, 2024
Short summary
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary
On the interpretation of upper-tropospheric humidity based on a second-order retrieval from infrared radiances
Klaus Gierens and Kostas Eleftheratos
Atmos. Chem. Phys., 19, 3733–3746, https://doi.org/10.5194/acp-19-3733-2019,https://doi.org/10.5194/acp-19-3733-2019, 2019
Short summary
Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations
Klaus Gierens, Kostas Eleftheratos, and Robert Sausen
Atmos. Meas. Tech., 11, 939–948, https://doi.org/10.5194/amt-11-939-2018,https://doi.org/10.5194/amt-11-939-2018, 2018
Short summary
Technical note: On the intercalibration of HIRS channel 12 brightness temperatures following the transition from HIRS 2 to HIRS 3/4 for ice saturation studies
Klaus Gierens and Kostas Eleftheratos
Atmos. Meas. Tech., 10, 681–693, https://doi.org/10.5194/amt-10-681-2017,https://doi.org/10.5194/amt-10-681-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024,https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024,https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024,https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Cloud response to co-condensation of water and organic vapors over the boreal forest
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024,https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024,https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary

Cited articles

Baumgartner, M. and Spichtinger, P.: Homogeneous nucleation from an asymptotic point of view, Theor. Comp. Fluid Dyn., 33, 83–106, 2019. a
Corti, T. and Peter, T.: A simple model for cloud radiative forcing, Atmos. Chem. Phys., 9, 5751–5758, https://doi.org/10.5194/acp-9-5751-2009, 2009. a
Dekoutsidis, G., Groß, S., Wirth, M., Krämer, M., and Rolf, C.: Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air, Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, 2023. a
Dietmüller, S., Matthes, S., Dahlmann, K., Yamashita, H., Simorgh, A., Soler, M., Linke, F., Lührs, B., Meuser, M. M., Weder, C., Grewe, V., Yin, F., and Castino, F.: A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0, Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, 2023. a
Dowling, D. and Radke, L.: A summary of the physical properties of cirrus clouds, J. Appl. Meteorol., 29, 970–978, 1990. a
Download
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Altmetrics
Final-revised paper
Preprint