Articles | Volume 23, issue 23
https://doi.org/10.5194/acp-23-15057-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-15057-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of maritime shipping on air pollution along the US East Coast
Maryam Golbazi
CORRESPONDING AUTHOR
Center for Research in Wind (CReW), University of Delaware, 221 Academy Street, Newark, DE 19716, USA
Cristina Archer
Center for Research in Wind (CReW), University of Delaware, 221 Academy Street, Newark, DE 19716, USA
Related authors
No articles found.
Ali Khanjari and Cristina Archer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-220, https://doi.org/10.5194/wes-2025-220, 2025
Preprint under review for WES
Short summary
Short summary
In a wind farm, wind turbines decrease the wind speed and add turbulence, reducing the efficiency of turbines behind them and the overall wind farm performance. This study organizes mathematical models and uses computer simulations to examine how turbines interact. The results will help improve wind farm design and better understanding of their environmental effects in the future.
Cristina Lozej Archer
Wind Energ. Sci., 10, 1433–1438, https://doi.org/10.5194/wes-10-1433-2025, https://doi.org/10.5194/wes-10-1433-2025, 2025
Short summary
Short summary
Two approximate analytical expressions are derived, one for the variance of wind speed and the other for turbulence intensity, based on one simple assumption: that the turbulent fluctuations in wind are small with respect to the mean. The formulations perform well when applied to the observations from the American WAKE experimeNt (AWAKEN) field campaign conducted in 2023.
Ali Khanjari, Asim Feroz, and Cristina L. Archer
Wind Energ. Sci., 10, 887–905, https://doi.org/10.5194/wes-10-887-2025, https://doi.org/10.5194/wes-10-887-2025, 2025
Short summary
Short summary
Wind turbines add turbulence to the atmosphere behind them, especially 4–6 diameters downstream and near the rotor top. We propose an equation that predicts the distribution of added turbulence as a function of a turbine parameter (thrust coefficient) and an atmospheric parameter (undisturbed turbulence intensity before the turbine). We find that our equation performs well, although not perfectly. Ultimately this equation can be used to better understand how wind turbines affect the atmosphere.
Yulong Ma, Cristina L. Archer, and Ahmadreza Vasel-Be-Hagh
Wind Energ. Sci., 7, 2407–2431, https://doi.org/10.5194/wes-7-2407-2022, https://doi.org/10.5194/wes-7-2407-2022, 2022
Short summary
Short summary
Wind turbine wakes are important because they reduce the power production of wind farms and may cause unintended impacts on the weather around wind farms. Weather prediction models, like WRF and MPAS, are often used to predict both power and impacts of wind farms, but they lack an accurate treatment of wind farm wakes. We developed the Jensen wind farm parameterization, based on the existing Jensen model of an idealized wake. The Jensen parameterization is accurate and computationally efficient.
Cited articles
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution of ship emissions to the concentration and deposition of air pollutants in Europe, Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, 2016. a
Ancell, B. C., Bogusz, A., Lauridsen, M. J., and Nauert, C. J.: Seeding Chaos: The Dire Consequences of Numerical Noise in NWP Perturbation Experiments, B. Am. Meteorol. Soc., 99, 615–628, https://doi.org/10.1175/BAMS-D-17-0129.1, 2018. a
Archer, C. L., Colle, B. A., Veron, D. L., Veron, F., and Sienkiewicz, M. J.: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the US northeastern coast, J. Geophys. Res.-Atmos., 121, 8869–8885, 2016. a
Archer, C. L., Cervone, G., Golbazi, M., Al Fahel, N., and Hultquist, C.: Changes in air quality and human mobility in the USA during the COVID-19 pandemic, Bull. Atmos. Sci. Technol., 1, 491–514, 2020. a
Arya, S. P.: Air pollution meteorology and dispersion, Oxford University Press, New York, ISBN 0195073983, 1999. a
Beck, J., Krzyzanowski, M., and Koffi, B.: Tropospheric Ozone in the European Union – The consolidated report, Tech. rep., EEA Topic Report, EEA, ISBN 92-828-5672-0, 1998. a
Cohen, J., Fitz-Simons, T., and Wayland, M.: Guideline on data handling conventions for the PM NAAQS, Tech. rep. EPA-454/R-99-099, Environmental Protection Agency, Office of Air Quality Planning and Standards, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/19990401_oaqps_epa-454_r-99-009_guideline_data_handling_pm_naaqs.pdf (last access: 12 January 2023), 1999. a
Corbett, J. J. and Fischbeck, P.: Emissions from ships, Science, 278, 823–824, 1997. a
Corbett, J. J. and Köhler, H. W.: Updated emissions from ocean shipping, J. Geophys. Res., 108, 4650, https://doi.org/10.1029/2003JD003751, 2003. a
Corbett, J. J., Fischbeck, P. S., and Pandis, S. N.: Global nitrogen and sulfur inventories for oceangoing ships, J. Geophys. Res.-Atmos., 104, 3457–3470, 1999. a
Delle Monache, L., Alessandrini, S., Djalalova, I., Wilczak, J., Knievel, J. C., and Kumar, R.: Improving air quality predictions over the United States with an analog ensemble, Weather Forecast., 35, 2145–2162, 2020. a
Endresen, O., Sorgard, E., Sundet, J., Dalsoren, S., Isaksen, I., Berglen, T., and Gravir, G.: Emission from international sea transportation and environmental impact, J. Geophys. Res., 108, 4560, https://doi.org/10.1029/2002JD002898, 2003. a
Endresen, O., Sorgard, E., Behrens, H. L., Brett, P. O., and Isaksen, I. S. A.: A historical reconstruction of ships fuel consumption and emissions, J. Geophys. Res., 112, D12301, https://doi.org/10.1029/2006JD007630, 2007. a
Eyring, V., Köhler, H., Van Aardenne, J., and Lauer, A.: Emissions from international shipping: 1. The last 50 years, J. Geophys. Res.-Atmos., 110, D17305, https://doi.org/10.1029/2004JD005619, 2005. a
Eyring, V., Stevenson, D. S., Lauer, A., Dentener, F. J., Butler, T., Collins, W. J., Ellingsen, K., Gauss, M., Hauglustaine, D. A., Isaksen, I. S. A., Lawrence, M. G., Richter, A., Rodriguez, J. M., Sanderson, M., Strahan, S. E., Sudo, K., Szopa, S., van Noije, T. P. C., and Wild, O.: Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030, Atmos. Chem. Phys., 7, 757–780, https://doi.org/10.5194/acp-7-757-2007, 2007. a, b
Finlayson-Pitts, B. and Pitts Jr., J.: Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications, Air Waste, 43, 1091–1100, 1993. a
Foley, K. M., Hogrefe, C., Pouliot, G., Possiel, N., Roselle, S. J., Simon, H., and Timin, B.: Dynamic evaluation of CMAQ part I: Separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US, Atmos. Environ., 103, 247–255, 2015. a
Fuller, R., Landrigan, P., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., Caravanos, J., Chiles, T., Cohen, A., Corra, L., Cropper, M., Ferraro, g., Hanna, J., Hanrahan, D., Hu, H., Hunter, D., Janata, G., Kupka, R., Lanphear, B., Lichtveld, M., Martin, K., Mustapha, A., Sanchez-Triana, E., Sandilya, K., Schaefli, L., Shaw, J., Seddon, J., Suk, W., Téllez-Rojo, M., and Yan, C.: Pollution and health: a progress update, Lancet Planet. Health, 6, E535–E547, https://doi.org/10.1016/S2542-5196(22)00090-0, 2022. a
Golbazi, M.: golbazimaryam/ShippingEmissionsAndAirQuality: Impacts of maritime shipping on air pollution along the US East Coast (v.02), Zenodo [data set], https://doi.org/10.5281/zenodo.10257103, 2023. a
Golbazi, M. and Archer, C. L.: Methods to Estimate Surface Roughness Length for Offshore Wind Energy, Adv. Meteorol., 2019, 5695481, https://doi.org/10.1155/2019/5695481, 2019. a
Golbazi, M., Archer, C. L., and Alessandrini, S.: Surface impacts of large offshore wind farms, Environ. Res. Lett., 17, 064021, https://doi.org/10.1088/1748-9326/ac6e49 , 2022. a, b, c
Golbazi, M., Kumar, R., and Alessandrini, S.: Enhancing air quality forecasts across the contiguous United States (CONUS) during wildfires using an Analog-based post-processing methods, in: EGU General Assembly 2023, EGU23-10607, https://doi.org/10.5194/egusphere-egu23-10607, 2023. a
Kumar, R., Lee, J. A., Delle Monache, L., and Alessandrini, S.: Effect of meteorological variability on fine particulate matter simulations over the contiguous United States, J. Geophys. Res.-Atmos., 124, 5669–5694, 2019. a
Li, X., Qin, M., Li, L., Gong, K., Shen, H., Li, J., and Hu, J.: Examining the implications of photochemical indicators for O3–NOx–VOC sensitivity and control strategies: a case study in the Yangtze River Delta (YRD), China, Atmos. Chem. Phys., 22, 14799–14811, https://doi.org/10.5194/acp-22-14799-2022, 2022. a
Lin, J.-T. and McElroy, M. B.: Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic https://doi.org/10.5194/acp-11-8171-2011, 2011. a
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell, C., and He, K.: Health and climate impacts of ocean-going vessels in East Asia, Nat. Clim. Change, 6, 1037–1041, 2016. a
Lv, Z., Liu, H., Ying, Q., Fu, M., Meng, Z., Wang, Y., Wei, W., Gong, H., and He, K.: Impacts of shipping emissions on PM2.5 pollution in China, Atmos. Chem. Phys., 18, 15811–15824, https://doi.org/10.5194/acp-18-15811-2018, 2018. a
Ma, J., Richter, A., Burrows, J. P., Nüß, H., and van Aardenne, J. A.: Comparison of model-simulated tropospheric NO2 over China with GOME-satellite data, Atmos. Environ., 40, 593–604, 2006. a
Moghani, M., Archer, C. L., and Mirzakhalili, A.: The importance of transport to ozone pollution in the U.S. Mid-Atlantic, Atmos. Environ., 191, 420–431, 2018. a
Murray, C. J. L. and Lopez, A. D.: Evidence-based health policy – Lessons from the Global Burden of Disease Study, Science, 274, 740–743, 1996. a
National Research Council: Rethinking the ozone problem in urban and regional air pollution, National Academies Press, Washington, DC, https://doi.org/10.17226/1889, 1992. a
Niemeier, U., Granier, C., Kornblueh, L., Walters, S., and Brasseur, G.: Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing, J. Geophys. Res.-Atmos., 111, D09301, https://doi.org/10.1029/2005JD006407, 2006. a
Ryu, Y.-H., Hodzic, A., Barre, J., Descombes, G., and Minnis, P.: Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals, Atmos. Chem. Phys., 18, 7509–7525, https://doi.org/10.5194/acp-18-7509-2018, 2018. a
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley and Sons, ISBN 0471178160, 1998. a
Serra, P. and Fancello, G.: Towards the IMO's GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping, Sustainability, 12, 3220, https://doi.org/10.3390/su12083220, 2020. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X.: A description of the advanced research WRF model version 4, Tech. rep., National Center for Atmospheric Research, Boulder, CO, USA, https://doi.org/10.5065/1dfh-6p97, 2019. a
Smith, T. W., Jalkanen, J., Anderson, B., Corbett, J., Faber, J., Hanayama, S., O'keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelisse, N. D., Lee, D., Agrawal, A., Winebrake, J., Hoen, M., Chesworth, S., and Pandey, A.: Third IMO greenhouse gas study 2014, https://www.imo.org/en/ourwork/environment/pages/greenhouse-gas-studies-2014.aspx (last access: 12 January 2023), 2015. a
US Environmental Protection Agency: 2020 National Emissions Inventory Technical Support Document: Commercial Marine Vessels, Tech. rep., https://www.epa.gov/system/files/documents/2023-03/NEI2020_TSD_Section11_CMV.pdf (last access: 12 January 2023), 2020. a
US Environmental Protection Agency: 2017 National Emissions Inventory: January 2021 Updated Release, Technical Support Document, Tech. rep., https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-january-2021-updated (last access: 12 January 2023), 2021. a
US EPA – US Environmental Protection Agency: Profile Of Version 1 Of The 2014 National Emissions Inventory, Tech. rep., Office of Air Quality Planning and Standards, https://www.epa.gov/sites/production/files/2017-04/documents/2014neiv1_profile_final_april182017.pdf (last access: 17 June 2020), 2017. a
US EPA – US Environmental Protection Agency: Nitrogen Dioxide (NO2) Pollution, https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics (last access: 28 July 2020), 2020a. a
US EPA – US Environmental Protection Agency: Particulate Matter (PM) Pollution, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM (last access: 10 June 2020), 2020b. a
US EPA – US Environmental Protection Agency: Photochemical Air Quality Modeling, Support Center for Regulatory Atmospheric Modeling (SCRAM), https://www.epa.gov/scram/photochemical-air-quality-modeling (last accessed: 1 December 2022), 2022a. a
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., Garcia Dos Santos, S., Herce, M. D., and Fernández-Patier, R.: Chemical tracers of particulate emissions from commercial shipping, Environ. Sci. Technol., 43, 7472–7477, 2009. a
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., Vlieger, I., and Aardenne, J.: Impact of maritime transport emissions on coastal air quality in Europe, Atmos. Environ., 90, 96–105, https://doi.org/10.1016/j.atmosenv.2014.03.046, 2014. a
Wan, Z., Zhu, M., Chen, S., and Sperling, D.: Pollution: Three steps to a green shipping industry, Nature, 530, 275–277, 2016. a
Yao, Z., Wu, B., Shen, X., Cao, X., Jiang, X., Ye, Y., and He, K.: On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China, Atmos. Environ., 105, 91–96, https://doi.org/10.1016/j.atmosenv.2015.01.054, 2015. a
Zhang, F., Bei, N., Nielsen-Gammon, J. W., Li, G., Zhang, R., Stuart, A., and Aksoy, A.: Impacts of meteorological uncertainties on ozone pollution predictability estimated through meteorological and photochemical ensemble forecasts, J. Geophys. Res.-Atmos., 112, D04304, https://doi.org/10.1029/2006JD007429, 2007. a
Zhang, L., Jacob, D. J., Yue, X., Downey, N. V., Wood, D. A., and Blewitt, D.: Sources contributing to background surface ozone in the US Intermountain West, Atmos. Chem. Phys., 14, 5295–5309, https://doi.org/10.5194/acp-14-5295-2014, 2014. a
Short summary
We use scientific models to study the impact of ship emissions on air quality along the US East Coast. We find an increase in three major pollutants (PM2.5, NO2, and SO2) in coastal regions. However, we detect a reduction in ozone (O3) levels in major coastal cities. This reduction is linked to the significant emissions of nitrogen oxides (NOx) from ships, which scavenged O3, especially in highly polluted urban areas experiencing an NOx-limited regime.
We use scientific models to study the impact of ship emissions on air quality along the US East...
Altmetrics
Final-revised paper
Preprint