Articles | Volume 23, issue 23
https://doi.org/10.5194/acp-23-14903-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-14903-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation
Zefan Ju
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Junfeng Yang
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Qian Lu
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
Related authors
No articles found.
Rongzhao Lu and Jian Rao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1178, https://doi.org/10.5194/egusphere-2025-1178, 2025
Short summary
Short summary
The downward impact of sudden stratospheric warming events (SSWs) on the troposphere is still controversial. We further classify downward-propagating SSWs (DWs) into three types that are followed by cold surges over Eurasia (EA), over North America (NA), and over both (BOTH), respectively. This study reveals the diversity of the DWs and distinguishes their potential impact on both continents in the Northern Hemisphere.
Qian Lu, Jian Rao, Chunhua Shi, and Chaim I. Garfinkel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1123, https://doi.org/10.5194/egusphere-2025-1123, 2025
Short summary
Short summary
Stratospheric water vapor has been proven to have significant climate effects as a greenhouse gas. Tropical stratospheric water vapor exhibits a clear imprint of the Quasi-Biennial Oscillation (QBO). This study compares the water vapor variations associated with the QBO between boreal winter and summer, and the seasonal difference in the water vapor QBO signals is revealed.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Y. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 6, 171–195, https://doi.org/10.5194/wcd-6-171-2025, https://doi.org/10.5194/wcd-6-171-2025, 2025
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere is coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too weak; however downward coupling from the lower stratosphere to the near surface is too strong.
Zengmao Zhang, Xiong Hu, Qingchen Xu, Bing Cai, and Junfeng Yang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-27, https://doi.org/10.5194/angeo-2024-27, 2025
Revised manuscript under review for ANGEO
Short summary
Short summary
Using horizontal wind data collected by the dual-frequency Stratosphere-Troposphere-Meteor radar at the Langfang Observatory, the spatiotemporal characteristics and propagation properties of planetary waves in the troposphere-stratosphere (ST) and mesosphere-lower thermosphere (MLT) were explored, along with their interactions across different atmospheric layers. These new observations enhance our understanding of vertical coupling between the ST and MLT through planetary waves.
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Rongzhao Lu and Jian Rao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2179, https://doi.org/10.5194/egusphere-2024-2179, 2024
Preprint archived
Short summary
Short summary
The SSWs are classified into downward-propagating (DW) SSWs with noticeable impacts on the troposphere and non-downward-propagating (NDW). The DW events are further classified into three types. This study improves our understanding of the diversity of the SSWs.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Cited articles
Abhik, S. and Hendon, H. H.: Influence of the QBO on the MJO During Coupled Model Multiweek Forecasts, Geophys. Res. Lett., 46, 9213–9221, https://doi.org/10.1029/2019GL083152, 2019.
Alexander, M. J., Grimsdell, A. W., Stephan, C. C., and Hoffmann, L.: MJO-related intraseasonal variation in the stratosphere: gravity waves and zonal winds, J. Geophys. Res. Atmos., 123, 775–788, https://doi.org/10.1002/2017JD027620, 2018.
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation: high-latitude influence of the QBO, Q. J. Roy. Meteor. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014.
Bai, L., Ren, H.-L., Wei, Y., Wang, Y., and Chen, B.: Influence of Madden–Julian Oscillation on precipitation over the Tibetan Plateau in boreal summer, Atmosphere, 14, 70, https://doi.org/10.3390/atmos14010070, 2022.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001.
Barnes, E. A., Samarasinghe, S. M., Ebert-Uphoff, I., and Furtado, J. C.: Tropospheric and stratospheric causal pathways between the MJO and NAO, J. Geophys. Res.-Atmos., 124, 9356–9371, https://doi.org/10.1029/2019JD031024, 2019.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Wayne Higgins, R., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132, 2008.
Chen, X., Dai, A., Wen, Z., and Song, Y.: Contributions of Arctic sea-ice loss and east Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall, Geophys. Res. Lett., 48, e2021GL092748, https://doi.org/10.1029/2021GL092748, 2021a.
Chen, X., Ling, J., Li, C., Li, L., and Yang, M.: Different impacts of Madden–Julian Oscillation on winter rainfall over Southern China, J. Meteorol. Res.-PRC, 35, 271–281, https://doi.org/10.1007/s13351-021-0138-7, 2021b.
Chen, X., Wen, Z., Song, Y., and Guo, Y.: Causes of extreme 2020 Meiyu-Baiu rainfall: a study of combined effect of Indian Ocean and Arctic, Clim. Dynam., 59, 3485–3501, https://doi.org/10.1007/s00382-022-06279-0, 2022.
Chen, Y. and Zhai, P.: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley, Clim. Dynam., 47, 989–1006, https://doi.org/10.1007/s00382-015-2885-6, 2016.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser, D. E.: On The Relationship between the QBO and Tropical Deep Convection, J. Climate, 16, 2552–2568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2, 2003.
Densmore, C. R., Sanabia, E. R., and Barrett, B. S.: QBO influence on MJO amplitude over the maritime continent: physical mechanisms and seasonality, Mon. Weather Rev., 147, 389–406, https://doi.org/10.1175/MWR-D-18-0158.1, 2019.
Ding, Y., Liang, P., Liu, Y., and Zhang, Y.: Multiscale variability of Meiyu and its prediction: a new review, J. Geophys. Res.-Atmos., 125, e2019JD031496, https://doi.org/10.1029/2019JD031496, 2020.
Feng, S., Nadarajah, S., and Hu, Q.: Modeling annual extreme precipitation in China using the generalized extreme value distribution, J. Meteorol. Soc. Jpn., 85, 599–613, https://doi.org/10.2151/jmsj.85.599, 2007.
Fletcher, C. G. and Kushner, P. J.: The role of linear interference in the annular mode response to tropical SST forcing, J. Climate, 24, 778–794, https://doi.org/10.1175/2010JCLI3735.1, 2011.
Garfinkel, C. I. and Hartmann, D. L.: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: simplified dry GCMs, J. Atmos. Sci., 68, 1273–1289, https://doi.org/10.1175/2011JAS3665.1, 2011.
Garfinkel, C. I. and Schwartz, C.: MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models, Geophys. Res. Lett., 44, 10054–10062, https://doi.org/10.1002/2017GL074470, 2017.
Garfinkel, C. I., Benedict, J. J., and Maloney, E. D.: Impact of the MJO on the boreal winter extratropical circulation, Geophys. Res. Lett., 41, 6055–6062, https://doi.org/10.1002/2014GL061094, 2014.
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, 2018.
Guan, W., Ren, X., Shang, W., and Hu, H.: Subseasonal zonal oscillation of the western pacific subtropical high during early summer, J. Meteorol. Res.-PRC, 32, 768–780, https://doi.org/10.1007/s13351-018-8061-2, 2018.
Haynes, P., Hitchcock, P., Hitchman, M., Yoden, S., Hendon, H., Kiladis, G., Kodera, K., and Simpson, I.: The Influence of the Stratosphere on the Tropical Troposphere, J. Meteorol. Soc. Jpn., 99, 803–845, https://doi.org/10.2151/jmsj.2021-040, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V., and Tegtmeier, S.: An Observational History of the Direct Influence of the Stratospheric Quasi-biennial Oscillation on the Tropical and Subtropical Upper Troposphere and Lower Stratosphere, J. Meteorol. Soc. Jpn., 99, 239–267, https://doi.org/10.2151/jmsj.2021-012, 2021.
Holton, J. R. and Tan, H.-C.: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:tioteq>2.0.co;2, 1980.
Holton, J. R. and Tan, H.-C.: The Quasi-Biennial Oscillation in the Northern Hemisphere lower stratosphere, J. Meteorol. Soc. Jpn., 60, 140–148, https://doi.org/10.2151/jmsj1965.60.1_140, 1982.
Hu, J., Gao, X., Ren, R., Luo, J., Deng, J., and Xu, H.: On the relationship between the stratospheric Quasi-Biennial Oscillation and summer precipitation in northern China, Geophys. Res. Lett., 49, e2021GL097687, https://doi.org/10.1029/2021GL097687, 2022.
Huang, K. and Pegion, K.: The roles of westward-propagating waves and the QBO in limiting MJO propagation, J. Climate, 35, 6031–6049, https://doi.org/10.1175/JCLI-D-21-0691.1, 2022.
Jenney, A. M., Nardi, K. M., Barnes, E. A., and Randall, D. A.: The seasonality and regionality of MJO impacts on North American temperature, Geophys. Res. Lett., 46, 9193–9202, https://doi.org/10.1029/2019GL083950, 2019.
Jeong, J.-H., Kim, B.-M., Ho, C.-H., and Noh, Y.-H.: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion, J. Climate, 21, 788–801, https://doi.org/10.1175/2007JCLI1801.1, 2008.
Jia, X., Chen, L., Ren, F., and Li, C.: Impacts of the MJO on winter rainfall and circulation in China, Adv. Atmos. Sci., 28, 521–533, https://doi.org/10.1007/s00376-010-9118-z, 2011.
Ju, Z., Rao, J., Wang, Y., Yang, J., and Lu, Q.: Modulation of the intraseasonal variability in early summer precipitation in eastern China by the QBO and MJO, Zenodo [data set], https://doi.org/10.5281/zenodo.10205587, 2023.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2, 1996.
Kang, W. and Tziperman, E.: The MJO-SSW teleconnection: interaction between mjo-forced waves and the midlatitude jet, Geophys. Res. Lett., 45, 4400–4409, https://doi.org/10.1029/2018GL077937, 2018.
Kikuchi, K., Wang, B., and Kajikawa, Y.: Bimodal representation of the tropical intraseasonal oscillation, Clim. Dynam., 38, 1989–2000, https://doi.org/10.1007/s00382-011-1159-1, 2012.
Kim, H., Son, S., and Yoo, C.: QBO Modulation of the MJO-related precipitation in East Asia, J. Geophys. Res.-Atmos., 125, e2019JD031929, https://doi.org/10.1029/2019JD031929, 2020a.
Kim, S., Kug, J.-S., and Seo, K.-H.: Impacts of MJO on the intraseasonal temperature variation in East Asia, J. Climate, 33, 8903–8916, https://doi.org/10.1175/JCLI-D-20-0302.1, 2020b.
Klotzbach, P., Abhik, S., Hendon, H. H., Bell, M., Lucas, C., G. Marshall, A., and Oliver, E. C. J.: On the emerging relationship between the stratospheric Quasi-Biennial oscillation and the Madden–Julian oscillation, Sci. Rep.-UK, 9, 2981, https://doi.org/10.1038/s41598-019-40034-6, 2019.
Lafleur, D. M., Barrett, B. S., and Henderson, G. R.: Some climatological aspects of the Madden–Julian Oscillation (MJO), J. Climate, 28, 6039–6053, https://doi.org/10.1175/JCLI-D-14-00744.1, 2015.
Lee, J.-Y., Wang, B., Wheeler, M. C., Fu, X., Waliser, D. E., and Kang, I.-S.: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region, Clim. Dynam., 40, 493–509, https://doi.org/10.1007/s00382-012-1544-4, 2013.
Li, C.: Skillful seasonal prediction of Yangtze river valley summer rainfall, Environ. Res. Lett., 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002, 2016.
Li, H., Zhai, P., Chen, Y., and Lu, E.: Potential influence of the East Asia–Pacific teleconnection pattern on persistent precipitation in South China: implications of atypical Yangtze River Valley cases, Weather Forecast., 33, 267–282, https://doi.org/10.1175/WAF-D-17-0011.1, 2018.
Li, X., Gollan, G., Greatbatch, R. J., and Lu, R.: Impact of the MJO on the interannual variation of the Pacific–Japan mode of the East Asian summer monsoon, Clim. Dynam., 52, 3489–3501, https://doi.org/10.1007/s00382-018-4328-7, 2019.
Liang, P., Hu, Z.-Z., Liu, Y., Yuan, X., Li, X., and Jiang, X.: Challenges in predicting and simulating summer rainfall in the eastern China, Clim. Dynam., 52, 2217–2233, https://doi.org/10.1007/s00382-018-4256-6, 2019.
Liang, P., Hu, Z.-Z., Ding, Y., and Qian, Q.: The extreme Mei-yu Season in 2020: role of the Madden–Julian Oscillation and the cooperative influence of the Pacific and Indian Oceans, Adv. Atmos. Sci., 38, 2040–2054, https://doi.org/10.1007/s00376-021-1078-y, 2021.
Liebmann, B.: Description of a complete (interpolated) outgoing longwave radiation dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996.
Lu, W. and Hsu, P.-C.: Factors controlling the seasonality of the Madden–Julian Oscillation, Dynam. Atmos. Oceans, 78, 106–120, https://doi.org/10.1016/j.dynatmoce.2017.04.002, 2017.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific, J. Atmos. Sci., 28, 702–708, https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2, 1971.
Mao, Y., Wu, G., Xu, G., and Wang, L.: Reduction in precipitation seasonality in China from 1960 to 2018, J. Climate, 35, 227–248, https://doi.org/10.1175/JCLI-D-21-0324.1, 2022.
Martin, Z., Son, S.-W., Butler, A., Hendon, H., Kim, H., Sobel, A., Yoden, S., and Zhang, C.: The influence of the quasi-biennial oscillation on the Madden–Julian oscillation, Nat. Rev. Earth Environ., 2, 477–489, https://doi.org/10.1038/s43017-021-00173-9, 2021.
Moss, A. C., Wright, C. J., and Mitchell, N. J.: Does the Madden–Julian Oscillation modulate stratospheric gravity waves? Geophys. Res. Lett., 43, 3973–3981, https://doi.org/10.1002/2016GL068498, 2016.
Nitta, T.: Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation, J. Meteorol. Soc. Jpn., 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3_373, 1987.
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional pattern of projected future changes in extreme precipitation, Nat. Clim. Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017.
Qian, W., Li, J., and Shan, X.: Application of synoptic-scale anomalous winds predicted by medium-range weather forecast models on the regional heavy rainfall in China in 2010, Sci. China Earth Sci., 56, 1059–1070, https://doi.org/10.1007/s11430-013-4586-5, 2013.
Rao, J. and Ren, R.: A decomposition of ENSO's impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean, Clim. Dynam., 46, 3689–3707, https://doi.org/10.1007/s00382-015-2797-5, 2016.
Rao, J. and Ren, R.: Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO, Clim. Dynam., 54, 2249–2266, https://doi.org/10.1007/s00382-019-05111-6, 2020.
Rao, J., Garfinkel, C. I., and White, I. P.: How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models?, J. Climate, 33, 8975–8996, https://doi.org/10.1175/JCLI-D-20-0024.1, 2020a.
Rao, J., Garfinkel, C. I., and White, I. P.: Impact of the Quasi-Biennial Oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models, J. Climate, 33, 4787–4813, https://doi.org/10.1175/JCLI-D-19-0663.1, 2020b.
Rao, J., Xie, J., Cao, Y., Zhu, S., and Lu, Q.: Record flood-producing rainstorms of July 2021 and August 1975 in Henan of China: Comparative synoptic analysis using ERA5, J. Meteorol. Res.-PRC, 36, 809–823, https://doi.org/10.1007/s13351-022-2066-6, 2022c.
Rao, J., Garfinkel, C. I., Ren, R., Wu, T., and Lu, Y.: Southern hemisphere response to the quasi-biennial oscillation in the CMIP5/6 models, J. Climate, 36, 2603–2623, https://doi.org/10.1175/jcli-d-22-0675.1, 2023.
Ren, H.-L. and Ren, P.: Impact of Madden–Julian Oscillation upon winter extreme rainfall in southern China: observations and predictability in CFSv2, Atmosphere, 8, 192, https://doi.org/10.3390/atmos8100192, 2017.
Sillmann, J.: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities, Weather Clim. Extrem., 18, 65–74, https://doi.org/10.1016/j.wace.2017.10.003, 2017.
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric control of the Madden–Julian Oscillation, J. Climate, 30, 1909–1922, https://doi.org/10.1175/JCLI-D-16-0620.1, 2017.
Sun, L., Wang, H., and Liu, F.: Combined effect of the QBO and ENSO on the MJO, Atmos. Ocean. Sci. Lett., 12, 170–176, https://doi.org/10.1080/16742834.2019.1588064, 2019.
Takahashi, C., Yoneyama, K., Sato, N., Seiki, A., Shirooka, R., and Takayabu, Y. N.: The Madden–Julian Oscillation and extratropical teleconnection over East Asia during the northern winter in IPCC AR4 climate models, J. Meteorol. Soc. Jpn., 90A, 361–371, https://doi.org/10.2151/jmsj.2012-A21, 2012.
Takahashi, H. G. and Fujinami, H.: Recent decadal enhancement of Meiyu–Baiu heavy rainfall over East Asia, Sci. Rep.-UK, 11, 13665, https://doi.org/10.1038/s41598-021-93006-0, 2021.
Takasuka, D., Satoh, M., and Yokoi, S.: Observational Evidence of mixed Rossby-Gravity waves as a driving force for the MJO convective initiation and propagation, Geophys. Res. Lett., 46, 5546–5555, https://doi.org/10.1029/2019GL083108, 2019.
Takasuka, D., Kohyama, T., Miura, H., and Suematsu, T.: MJO initiation triggered by amplification of upper-tropospheric dry mixed Rossby-Gravity waves, Geophys. Res. Lett., 48, e2021GL094239, https://doi.org/10.1029/2021GL094239, 2021.
Takaya, Y., Ishikawa, I., Kobayashi, C., Endo, H., and Ose, T.: Enhanced Meiyu-Baiu rainfall in early summer 2020: aftermath of the 2019 super IOD event, Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671, 2020.
Toms, B. A., Barnes, E. A., Maloney, E. D., and Heever, S. C.: The global teleconnection signature of the Madden–Julian Oscillation and its modulation by the Quasi-Biennial Oscillation, J. Geophys. Res.-Atmos., 125, e2020JD032653, https://doi.org/10.1029/2020JD032653, 2020.
Wang, F. and Wang, L.: An exploration of the connection between quasi-biennial oscillation and Madden–Julian oscillation, Environ. Res. Lett., 16, 114021, https://doi.org/10.1088/1748-9326/ac3031, 2021.
Wang, G., Ling, Z., Wu, R., and Chen, C.: Impacts of the Madden–Julian Oscillation on the summer south China Sea ocean circulation and temperature, J. Climate, 26, 8084–8096, https://doi.org/10.1175/JCLI-D-12-00796.1, 2013.
Wang, J. and Zhang, X.: Downscaling and projection of winter extreme daily precipitation over North America, J. Climate, 21, 923–937, https://doi.org/10.1175/2007JCLI1671.1, 2008.
Wang, L., Wang, L., Chen, W., and Huangfu, J.: Modulation of winter precipitation associated with tropical cyclone of the western North Pacific by the stratospheric Quasi-Biennial oscillation, Envirom. Res. Lett., 16, 054004, https://doi.org/10.1088/1748-9326/abf3dd, 2021.
Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K., and Vitart, F.: Impact of the QBO on Prediction and Predictability of the MJO Convection, J. Geophys. Res.-Atmos., 124, 11766–11782, https://doi.org/10.1029/2019JD030575, 2019.
Wang, Z., Li, T., Gao, J., and Peng, M.: Enhanced winter and summer trend difference of Madden–Julian Oscillation intensity since 1871, Int. J. Climatol., 40, 6369–6381, https://doi.org/10.1002/joc.6586, 2020.
Wheeler, M. C. and Hendon, H. H.: An all-season real-time multivariate MJO index: development of an index for monitoring and prediction, Mon. Weather Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004.
Wu, G., Qin, S., Huang, C., Ma, Z., and Shi, C.: Seasonal precipitation variability in mainland China based on entropy theory, Int. J. Climatol., 41, 5264–5276, https://doi.org/10.1002/joc.7128, 2021.
Xu, P., Wang, L., Chen, W., Feng, J., and Liu, Y.: Structural changes in the Pacific–Japan pattern in the late 1990s, J. Climate, 32, 607–621, https://doi.org/10.1175/JCLI-D-18-0123.1, 2019.
Yang, C., Li, T., Xue, X., Gu, S., Yu, C., and Dou, X.: Response of the northern stratosphere to the Madden–Julian Oscillation during boreal winter, J. Geophys. Res.-Atmos., 124, 5314–5331, https://doi.org/10.1029/2018JD029883, 2019.
Yoo, C. and Son, S.: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 43, 1392–1398, https://doi.org/10.1002/2016GL067762, 2016.
Zhang, L., Wang, B., and Zeng, Q.: Impact of the Madden–Julian Oscillation on summer rainfall in Southeast China, J. Climate, 22, 201–216, https://doi.org/10.1175/2008JCLI1959.1, 2009.
Zhang, W., Huang, Z., Jiang, F., Stuecker, M. F., Chen, G., and Jin, F.: Exceptionally Persistent Madden–Julian Oscillation Activity Contributes to the Extreme 2020 East Asian Summer Monsoon Rainfall, Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588, 2021.
Zheng, C. and Chang, E. K. M.: The role of MJO propagation, lifetime, and intensity on modulating the temporal evolution of the MJO extratropical response, J. Geophys. Res.-Atmos., 124, 5352–5378, https://doi.org/10.1029/2019JD030258, 2019.
Zhu, Z., Chen, S., Yuan, K., Chen, Y., Gao, S., and Hua, Z.: Empirical subseasonal prediction of summer rainfall anomalies over the middle and lower reaches of the Yangtze River basin based on atmospheric intraseasonal oscillation, Atmosphere, 8, 185, https://doi.org/10.3390/atmos8100185, 2017.
Zou, X. and Ren, F.: Changes in regional heavy rainfall events in China during 1961–2012, Adv. Atmos. Sci., 32, 704–714, https://doi.org/10.1007/s00376-014-4127-y, 2015.
Short summary
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the Quasi-Biennial Oscillation (QBO) on East China summer rainfall variability. It is novel to find that the combined impact of MJO and QBO is not maximized when the QBO and MJO are in phase to enhance (or suppress) the tropical convection.
In the paper, we explored the impact of the Madden–Julian Oscillation (MJO) and the...
Altmetrics
Final-revised paper
Preprint