Articles | Volume 23, issue 22
https://doi.org/10.5194/acp-23-14097-2023
https://doi.org/10.5194/acp-23-14097-2023
Research article
 | 
14 Nov 2023
Research article |  | 14 Nov 2023

Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean

Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Albert Ansmann on behalf of the Authors (03 Sep 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (06 Sep 2023) by Martina Krämer
RR by Anonymous Referee #2 (11 Sep 2023)
ED: Publish as is (26 Sep 2023) by Martina Krämer
AR by Albert Ansmann on behalf of the Authors (29 Sep 2023)  Manuscript 
Download
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Altmetrics
Final-revised paper
Preprint