Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-12609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-12609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: integrating optical properties with chemical processes
Miao Zhong
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049, China
Jianzhong Xu
CORRESPONDING AUTHOR
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Huiqin Wang
Institute of Desert Meteorology, China Meteorological Administration,
Ürümqi 830002, China
Li Gao
School of Geography and Planning, Ningxia University, Yinchuan 750021, China
Haixia Zhu
Key Laboratory of Comprehensive and Highly Efficient Utilization of
Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of
Science, Xining 810008, China
Lixiang Zhai
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049, China
Xinghua Zhang
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Wenhui Zhao
State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Kemei Li, Yanqing An, Jianzhong Xu, Miao Zhong, Wenhui Zhao, and Xiang Qin
Atmos. Chem. Phys., 25, 12433–12450, https://doi.org/10.5194/acp-25-12433-2025, https://doi.org/10.5194/acp-25-12433-2025, 2025
Short summary
Short summary
This study presents a year-long PM2.5 study at Waliguan Baseline Observatory in the northeast of the Tibetan Plateau to investigate the optical properties of water-soluble brown carbon and its source. Our findings highlight that organic matter, sulfate, and nitrate are the dominant contributors to PM2.5 mass concentrations. Notable seasonal variations in the light absorption capacity of water-soluble brown carbon, accompanied by a high degree of oxidation are also observed.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Kemei Li, Yanqing An, Jianzhong Xu, Miao Zhong, Wenhui Zhao, and Xiang Qin
Atmos. Chem. Phys., 25, 12433–12450, https://doi.org/10.5194/acp-25-12433-2025, https://doi.org/10.5194/acp-25-12433-2025, 2025
Short summary
Short summary
This study presents a year-long PM2.5 study at Waliguan Baseline Observatory in the northeast of the Tibetan Plateau to investigate the optical properties of water-soluble brown carbon and its source. Our findings highlight that organic matter, sulfate, and nitrate are the dominant contributors to PM2.5 mass concentrations. Notable seasonal variations in the light absorption capacity of water-soluble brown carbon, accompanied by a high degree of oxidation are also observed.
Haixia Zhu, Lufei Zhen, Suping Zhao, and Xiying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1561, https://doi.org/10.5194/egusphere-2025-1561, 2025
Short summary
Short summary
This study collected dust samples from six sites in the Qaidam Basin, over three years to investigate the impact of domestic heating on atmospheric dust in hyper-arid region. Our results indicate that rural dust is significantly influenced by heating, particularly from coal and biomass burning which accounts for over 70 % of total sources. The unique energy structure here has resulted in distinct environmental effects from the emitted carbonaceous aerosols and useful for similar dry areas.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Fan Mei, Jian Wang, Shan Zhou, Qi Zhang, Sonya Collier, and Jianzhong Xu
Atmos. Chem. Phys., 21, 13019–13029, https://doi.org/10.5194/acp-21-13019-2021, https://doi.org/10.5194/acp-21-13019-2021, 2021
Short summary
Short summary
This work focuses on understanding aerosol's ability to act as cloud condensation nuclei (CCN) and its variations with organic oxidation level and volatility using measurements at a rural site. Aerosol properties were examined from four air mass sources. The results help improve the accurate representation of aerosol from different ambient aerosol emissions, transformation pathways, and atmospheric processes in a climate model.
Cited articles
Aiona, P. K., Lee, H. J., Leslie, R., Lin, P., Laskin, A., Laskin, J., and
Nizkorodov, S. A.: Photochemistry of Products of the Aqueous Reaction of
Methylglyoxal with Ammonium Sulfate, ACS Earth Sp. Chem., 1, 522–532,
https://doi.org/10.1021/acsearthspacechem.7b00075, 2017.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Barsotti, F., Ghigo, G., and Vione, D.: Computational assessment of the
fluorescence emission of phenol oligomers: A possible insight into the
fluorescence properties of humic-like substances (HULIS), J. Photoch.
Photobio. A, 315, 87–93, https://doi.org/10.1016/j.jphotochem.2015.09.012, 2016.
Baylon, P., Jaffe, D. A., Hall, S. R., Ullmann, K., Alvarado, M. J., and
Lefer, B. L.: Impact of Biomass Burning Plumes on Photolysis Rates and Ozone
Formation at the Mount Bachelor Observatory, J. Geophys. Res.-Atmos., 123,
2272–2284, https://doi.org/10.1002/2017jd027341, 2018.
Bikkina, S. and Sarin, M.: Brown carbon in the continental outflow to the
North Indian Ocean, Environ. Sci.-Proc. Imp., 21, 970–987, https://doi.org/10.1039/c9em00089e, 2019.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic
matter in cave and spring waters using UV–Vis absorbance and fluorescence
spectroscopy, Org. Geochem., 41, 270–280, https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Borrás, E. and Tortajada-Genaro, L. A.: Secondary organic aerosol
formation from the photo-oxidation of benzene, Atmos. Environ., 47, 154–163,
https://doi.org/10.1016/j.atmosenv.2011.11.020, 2012.
Browne, E. C., Zhang, X., Franklin, J. P., Ridley, K. J., Kirchstetter, T.
W., Wilson, K. R., Cappa, C. D., and Kroll, J. H.: Effect of heterogeneous
oxidative aging on light absorption by biomass burning organic aerosol,
Aerosol Sci. Tech., 53, 663–674, https://doi.org/10.1080/02786826.2019.1599321, 2019.
Cai, J., Zeng, X., Zhi, G., Gligorovski, S., Sheng, G., Yu, Z., Wang, X., and Peng, P.: Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry, Atmos. Chem. Phys., 20, 6115–6128, https://doi.org/10.5194/acp-20-6115-2020, 2020.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P.: Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal, Atmos. Chem. Phys., 21, 13187–13205, https://doi.org/10.5194/acp-21-13187-2021, 2021.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,
Ida, A., Kajii, Y., and Mochida, M.: Characterization of Chromophoric
Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by
HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy, Environ.
Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643, 2016.
Chen, Q., Li, J., Hua, X., Jiang, X., Mu, Z., Wang, M., Wang, J., Shan, M.,
Yang, X., Fan, X., Song, J., Wang, Y., Guan, D., and Du, L.: Identification
of species and sources of atmospheric chromophores by fluorescence
excitation-emission matrix with parallel factor analysis, Sci. Total
Environ., 718, 137322, https://doi.org/10.1016/j.scitotenv.2020.137322, 2020.
Chen, Q., Hua, X., Li, J., Chang, T., and Wang, Y.: Diurnal evolutions and
sources of water-soluble chromophoric aerosols over Xi'an during haze event,
in Northwest China, Sci. Total Environ., 786, 147412, https://doi.org/10.1016/j.scitotenv.2021.147412, 2021.
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescence
excitation-emission matrix regional integration to quantify spectra for
dissolved organic matter, Environ. Sci. Technol., 37, 5701–5710, https://doi.org/10.1021/es034354c, 2003.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M.,
Zhang, Y., and Chen, M.: Seasonal light absorption properties of
water-soluble brown carbon in atmospheric fine particles in Nanjing, China,
Atmos. Environ., 187, 230–240, https://doi.org/10.1016/j.atmosenv.2018.06.002, 2018.
Chen, Y., Xie, X., Shi, Z., Li, Y., Gai, X., Wang, J., Li, H., Wu, Y., Zhao,
X., Chen, M., and Ge, X.: Brown carbon in atmospheric fine particles in
Yangzhou, China: Light absorption properties and source apportionment,
Atmos. Res., 244, 105028, https://doi.org/10.1016/j.atmosres.2020.105028, 2020.
Cheng, Y., He, K.-b., Du, Z.-y., Engling, G., Liu, J.-m., Ma, Y.-l., Zheng,
M., and Weber, R. J.: The characteristics of brown carbon aerosol during
winter in Beijing, Atmos. Environ., 127, 355–364, https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
Cheng, Y., He, K. B., Engling, G., Weber, R., Liu, J. M., Du, Z. Y., and
Dong, S. P.: Brown and black carbon in Beijing aerosol: Implications for the
effects of brown coating on light absorption by black carbon, Sci. Total
Environ., 599–600, 1047–1055, https://doi.org/10.1016/j.scitotenv.2017.05.061, 2017.
Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 10, 4111–4131, https://doi.org/10.5194/acp-10-4111-2010, 2010.
Choudhary, V., Rajput, P., and Gupta, T.: Absorption properties and forcing
efficiency of light-absorbing water-soluble organic aerosols: Seasonal and
spatial variability, Environ. Pollut., 272, 115932, https://doi.org/10.1016/j.envpol.2020.115932, 2021.
Choudhary, V., Gupta, T., and Zhao, R.: Evolution of Brown Carbon Aerosols
during Atmospheric Long-Range Transport in the South Asian Outflow and
Himalayan Cryosphere, ACS Earth Sp. Chem., 6, 2335–2347, https://doi.org/10.1021/acsearthspacechem.2c00047, 2022.
Chow, J. C., Watson, J. G., Chen, L. W., Chang, M. C., Robinson, N. F.,
Trimble, D., and Kohl, S.: The IMPROVE_A temperature protocol
for thermal/optical carbon analysis: maintaining consistency with a
long-term database, J. Air Waste Manage., 57, 1014–1023, https://doi.org/10.3155/1047-3289.57.9.1014, 2007.
Cox, J. S., Smith, D. S., Warren, L. A., and Ferris, F. G.: Characterizing
Heterogeneous Bacterial Surface Functional Groups Using Discrete Affinity
Spectra for Proton Binding, Environ. Sci. Technol., 33, 4514–4521,
https://doi.org/10.1021/es990627l, 1999.
Dao, X., Di, S., Zhang, X., Gao, P., Wang, L., Yan, L., Tang, G., He, L.,
Krafft, T., and Zhang, F.: Composition and sources of particulate matter in
the Beijing-Tianjin-Hebei region and its surrounding areas during the
heating season, Chemosphere, 291, 132779, https://doi.org/10.1016/j.chemosphere.2021.132779, 2022.
Deng, J., Ma, H., Wang, X., Zhong, S., Zhang, Z., Zhu, J., Fan, Y., Hu, W., Wu, L., Li, X., Ren, L., Pavuluri, C. M., Pan, X., Sun, Y., Wang, Z., Kawamura, K., and Fu, P.: Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions, Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, 2022.
Ditto, J. C., Machesky, J., and Gentner, D. R.: Analysis of reduced and oxidized nitrogen-containing organic compounds at a coastal site in summer and winter, Atmos. Chem. Phys., 22, 3045–3065, https://doi.org/10.5194/acp-22-3045-2022, 2022.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M.,
and Weber, R.: A yearlong study of water-soluble organic carbon in Beijing
II: Light absorption properties, Atmos. Environ., 89, 235–241, https://doi.org/10.1016/j.atmosenv.2014.02.022, 2014.
Fan, X., Wei, S., Zhu, M., Song, J., and Peng, P.: Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels, Atmos. Chem. Phys., 16, 13321–13340, https://doi.org/10.5194/acp-16-13321-2016, 2016.
Fan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Ji, W., Song, J., and Peng, P.: The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning, Atmos. Chem. Phys., 20, 4593–4605, https://doi.org/10.5194/acp-20-4593-2020, 2020.
Fan, X. J., Cao, T., Yu, X. F., Song, J. Z., Wang, Y., Xiao, X., Xie, Y.,
and Li, F. Y.: Emission characteristics and optical properties of
extractable brown carbon from residential wood combustion, China Environ.
Sci., 39, 3215–3224, https://doi.org/10.19674/j.cnki.issn1000-6923.2019.0380, 2019.
Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J.
H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass
spectrometer to organonitrates and organosulfates and implications for
atmospheric chemistry, P. Natl. Acad. Sci. USA, 107, 6670–6675,
https://doi.org/10.1073/pnas.0912340107, 2010.
Faust, J. A., Wong, J. P., Lee, A. K., and Abbatt, J. P.: Role of Aerosol
Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic
Compounds, Environ. Sci. Technol., 51, 1405–1413, https://doi.org/10.1021/acs.est.6b04700, 2017.
Fellman, J. B., Hood, E., and Spencer, R. G. M.: Fluorescence spectroscopy
opens new windows into dissolved organic matter dynamics in freshwater
ecosystems: A review, Limnol. Oceanogr., 55, 2452–2462, https://doi.org/10.4319/lo.2010.55.6.2452, 2010.
Fu, P., Kawamura, K., Chen, J., Qin, M., Ren, L., Sun, Y., Wang, Z., Barrie,
L. A., Tachibana, E., Ding, A., and Yamashita, Y.: Fluorescent water-soluble
organic aerosols in the High Arctic atmosphere, Sci. Rep., 5, 9845,
https://doi.org/10.1038/srep09845, 2015.
Ghosh, K. and Schnitzer, M.: Fluorescence Excitation-Spectra and Viscosity
Behavior of a Fulvic-Acid and Its Copper and Iron Complexes, Soil Sci. Soc.
Am. J., 45, 25–29, https://doi.org/10.2136/sssaj1981.03615995004500010005x, 1981.
Hawkins, L. N., Lemire, A. N., Galloway, M. M., Corrigan, A. L., Turley, J.
J., Espelien, B. M., and De Haan, D. O.: Maillard Chemistry in Clouds and
Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances, Environ.
Sci. Technol., 50, 7443–7452, https://doi.org/10.1021/acs.est.6b00909, 2016.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
simplified description of the evolution of organic aerosol composition in
the atmosphere, Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010gl042737, 2010.
Heath, A. A., Ehrenhauser, F. S., and Valsaraj, K. T.: Effects of
temperature, oxygen level, ionic strength, and pH on the reaction of benzene
with hydroxyl radicals in aqueous atmospheric systems, J. Environ. Chem.
Eng., 1, 822–830, https://doi.org/10.1016/j.jece.2013.07.023,
2013.
Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10, 5965–5977, https://doi.org/10.5194/acp-10-5965-2010, 2010.
Herndon, S. C., Onasch, T. B., Wood, E. C., Kroll, J. H., Canagaratna, M.
R., Jayne, J. T., Zavala, M. A., Knighton, W. B., Mazzoleni, C., Dubey, M.
K., Ulbrich, I. M., Jimenez, J. L., Seila, R., de Gouw, J. A., de Foy, B.,
Fast, J., Molina, L. T., Kolb, C. E., and Worsnop, D. R.: Correlation of
secondary organic aerosol with odd oxygen in Mexico City, Geophys. Res.
Lett., 35, L15804, https://doi.org/10.1029/2008gl034058, 2008.
Hu, R., Xu, Q., Wang, S., Hua, Y., Bhattarai, N., Jiang, J., Song, Y.,
Daellenbach, K. R., Qi, L., Prevot, A. S. H., and Hao, J.: Chemical
characteristics and sources of water-soluble organic aerosol in southwest
suburb of Beijing, J. Environ. Sci., 95, 99–110, https://doi.org/10.1016/j.jes.2020.04.004, 2020.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prevot, A. S.: High secondary aerosol contribution to particulate pollution
during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu,
C., Dai, W., Wang, K., Lin, C., Ni, H., Corbin, J. C., Wu, Y., Zhang, R.,
Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.: Brown Carbon Aerosol in
Urban Xi'an, Northwest China: The Composition and Light Absorption
Properties, Environ. Sci. Technol., 52, 6825–6833, https://doi.org/10.1021/acs.est.8b02386, 2018.
Huang, R. J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W.,
Duan, J., Ni, H., Zhu, C., Dai, W., Li, Y., Chen, Y., Chen, Q., Wu, Y.,
Zhang, R., Dusek, U., O'Dowd, C., and Hoffmann, T.: Water-Insoluble Organics
Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical
Characteristics and Optical Properties, Environ. Sci. Technol., 54,
7836–7847, https://doi.org/10.1021/acs.est.0c01149, 2020.
Jiang, X., Liu, D., Li, Q., Tian, P., Wu, Y., Li, S., Hu, K., Ding, S., Bi,
K., Li, R., Huang, M., Ding, D., Chen, Q., Kong, S., Li, W., Pang, Y., and
He, D.: Connecting the Light Absorption of Atmospheric Organic Aerosols with
Oxidation State and Polarity, Environ. Sci. Technol., 56, 12873–12885,
https://doi.org/10.1021/acs.est.2c02202, 2022.
Kasthuriarachchi, N. Y., Rivellini, L. H., Chen, X., Li, Y. J., and Lee, A.
K. Y.: Effect of Relative Humidity on Secondary Brown Carbon Formation in
Aqueous Droplets, Environ. Sci. Technol., 54, 13207–13216, https://doi.org/10.1021/acs.est.0c01239, 2020.
Kim, H., Collier, S., Ge, X., Xu, J., Sun, Y., Jiang, W., Wang, Y., Herckes,
P., and Zhang, Q.: Chemical processing of water-soluble species and
formation of secondary organic aerosol in fogs, Atmos. Environ., 200,
158–166, https://doi.org/10.1016/j.atmosenv.2018.11.062, 2019.
Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to
predict the density of organic material composed of carbon, hydrogen, and
oxygen, Environ. Sci. Technol., 46, 787–794, https://doi.org/10.1021/es202525q, 2012.
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.,
Martin, A. T., Cummings, M. J., Croasdale, D. R., Brune, W. H., Worsnop, D.
R., and Davidovits, P.: Relationship between oxidation level and optical
properties of secondary organic aerosol, Environ. Sci. Technol., 47,
6349–6357, https://doi.org/10.1021/es401043j, 2013.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence intensity calibration using
the Raman scatter peak of water, Appl. Spectrosc., 63, 936–940, https://doi.org/10.1366/000370209788964548, 2009.
Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Excitation-emission spectra and fluorescence quantum yields for fresh and
aged biogenic secondary organic aerosols, Environ. Sci. Technol., 47,
5763–5770, https://doi.org/10.1021/es400644c, 2013.
Lei, L., Zhou, W., Chen, C., He, Y., Li, Z., Sun, J., Tang, X., Fu, P.,
Wang, Z., and Sun, Y.: Long-term characterization of aerosol chemistry in
cold season from 2013 to 2020 in Beijing, China, Environ. Pollut., 268,
115952, https://doi.org/10.1016/j.envpol.2020.115952, 2021.
Lei, Y., Shen, Z., Zhang, T., Zhang, Q., Wang, Q., Sun, J., Gong, X., Cao,
J., Xu, H., Liu, S., and Yang, L.: Optical source profiles of brown carbon
in size-resolved particulate matter from typical domestic biofuel burning
over Guanzhong Plain, China, Sci. Total Environ., 622–623, 244–251,
https://doi.org/10.1016/j.scitotenv.2017.11.353, 2018.
Li, C., He, Q., Hettiyadura, A. P. S., Kafer, U., Shmul, G., Meidan, D.,
Zimmermann, R., Brown, S. S., George, C., Laskin, A., and Rudich, Y.:
Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies
through NO3 Radical Reactions, Environ. Sci. Technol., 54, 1395–1405,
https://doi.org/10.1021/acs.est.9b05641, 2020.
Li, H., Qin, X., Wang, G., Xu, J., Wang, L., Lu, D., Liu, C., Zheng, H.,
Liu, J., Huang, K., and Deng, C.: Conjoint impacts of continental outflows
and marine sources on brown carbon in the East China sea: Abundances,
optical properties, and formation processes, Atmos. Environ., 273, 118959,
https://doi.org/10.1016/j.atmosenv.2022.118959, 2022.
Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and Cao, J.: Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in northwest China, Atmos. Chem. Phys., 20, 4889–4904, https://doi.org/10.5194/acp-20-4889-2020, 2020.
Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin,
A.: Molecular characterization of brown carbon (BrC) chromophores in
secondary organic aerosol generated from photo-oxidation of toluene, Phys.
Chem. Chem. Phys., 17, 23312–23325, https://doi.org/10.1039/c5cp02563j, 2015.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass
Burning Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824,
https://doi.org/10.1021/acs.est.6b03024, 2016.
Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and
Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a
Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561–11570,
https://doi.org/10.1021/acs.est.7b02276, 2017.
Liu, C., Liu, Y., Chen, T., Liu, J., and He, H.: Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals, Atmos. Chem. Phys., 19, 2001–2013, https://doi.org/10.5194/acp-19-2001-2019, 2019.
Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption, Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, 2013.
Liu, J. M., Wang, P. F., Zhang, H. L., Du, Z. Y., Zheng, B., Yu, Q. Q.,
Zheng, G. J., Ma, Y. L., Zheng, M., Cheng, Y., Zhang, Q., and He, K. B.:
Integration of field observation and air quality modeling to characterize
Beijing aerosol in different seasons, Chemosphere, 242, 125195, https://doi.org/10.1016/j.chemosphere.2019.125195, 2020.
Matos, J. T. V., Freire, S. M. S. C., Duarte, R. M. B. O., and Duarte, A.
C.: Natural organic matter in urban aerosols: Comparison between water and
alkaline soluble components using excitation–emission matrix fluorescence
spectroscopy and multiway data analysis, Atmos. Environ., 102, 1–10,
https://doi.org/10.1016/j.atmosenv.2014.11.042, 2015.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Mei, Y., Wang, L., and Wu, F.: Effects of water chemistry and concentrations
of dissolved organic matter on its fluorescence characteristics and
molecular conformation, Chin. J. Geochem., 28, 413–420, https://doi.org/10.1007/s11631-009-0413-2, 2009.
Milne, C. J., Kinniburgh, D. G., and Tipping, E.: Generic NICA-Donnan model
parameters for proton binding by humic substances, Environ. Sci. Technol.,
35, 2049–2059, https://doi.org/10.1021/es000123j, 2001.
Minakata, D., Li, K., Westerhoff, P., and Crittenden, J.: Development of a
group contribution method to predict aqueous phase hydroxyl radical (HO*)
reaction rate constants, Environ. Sci. Technol., 43, 6220–6227, https://doi.org/10.1021/es900956c, 2009.
Mo, Y., Li, J., Jiang, B., Su, T., Geng, X., Liu, J., Jiang, H., Shen, C.,
Ding, P., Zhong, G., Cheng, Z., Liao, Y., Tian, C., Chen, Y., and Zhang, G.:
Sources, compositions, and optical properties of humic-like substances in
Beijing during the 2014 APEC summit: Results from dual carbon isotope and
Fourier-transform ion cyclotron resonance mass spectrometry analyses,
Environ. Pollut., 239, 322–331, https://doi.org/10.1016/j.envpol.2018.04.041, 2018.
Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary
organic aerosols and their changes by chemical processes, Chem. Rev., 115,
4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Mok, J., Krotkov, N. A., Arola, A., Torres, O., Jethva, H., Andrade, M.,
Labow, G., Eck, T. F., Li, Z., Dickerson, R. R., Stenchikov, G. L., Osipov,
S., and Ren, X.: Impacts of brown carbon from biomass burning on surface UV
and ozone photochemistry in the Amazon Basin, Sci. Rep., 6, 36940,
https://doi.org/10.1038/srep36940, 2016.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 5,
6557-6566, https://doi.org/10.1039/c3ay41160e, 2013.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011.
Ni, H., Huang, R. J., Pieber, S. M., Corbin, J. C., Stefenelli, G.,
Pospisilova, V., Klein, F., Gysel-Beer, M., Yang, L., Baltensperger, U.,
Haddad, I. E., Slowik, J. G., Cao, J., Prevot, A. S. H., and Dusek, U.:
Brown Carbon in Primary and Aged Coal Combustion Emission, Environ. Sci.
Technol., 55, 5701–5710, https://doi.org/10.1021/acs.est.0c08084, 2021.
Ni, H., Huang, R. J., Yao, P., Cosijn, M. M., Kairys, N., Zhong, H., and
Dusek, U.: Organic aerosol formation and aging processes in Beijing
constrained by size-resolved measurements of radiocarbon and stable isotopic
13C, Environ. Int., 158, 106890, https://doi.org/10.1016/j.envint.2021.106890, 2022.
Ohno, T.: Fluorescence inner-filtering correction for determining the
humification index of dissolved organic matter, Environ. Sci. Technol., 36,
742–746, https://doi.org/10.1021/es0155276, 2002.
Phillips, S. M., Bellcross, A. D., and Smith, G. D.: Light Absorption by
Brown Carbon in the Southeastern United States is pH-dependent, Environ.
Sci. Technol., 51, 6782–6790, https://doi.org/10.1021/acs.est.7b01116, 2017.
Psichoudaki, M. and Pandis, S. N.: Atmospheric aerosol water-soluble organic
carbon measurement: a theoretical analysis, Environ. Sci. Technol., 47,
9791–9798, https://doi.org/10.1021/es402270y, 2013.
Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan,
J.: Fluorescence fingerprinting properties for exploring water-soluble
organic compounds in PM2.5 in an industrial city of northwest China, Atmos.
Environ., 184, 203–211, https://doi.org/10.1016/j.atmosenv.2018.04.049, 2018.
Qin, J., Zhang, L., Qin, Y., Shi, S., Li, J., Gao, Y., Tan, J., and Wang,
X.: pH-Dependent Chemical Transformations of Humic-Like Substances and
Further Cognitions Revealed by Optical Methods, Environ. Sci. Technol., 56,
7578–7587, https://doi.org/10.1021/acs.est.1c07729, 2022a.
Qin, J., Tan, J., Zhou, X., Yang, Y., Qin, Y., Wang, X., Shi, S., Xiao, K., and Wang, X.: Measurement report: Particle-size-dependent fluorescence properties of water-soluble organic compounds (WSOCs) and their atmospheric implications for the aging of WSOCs, Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, 2022b.
Qin, Y., Yang, Y., Qin, J., Zhang, L., Guo, S., Zhou, X., Chen, R., Tan, J.,
Xiao, K., and Wang, X.: pH-Responsive Fluorescence EEM to Titrate the
Interaction between Fluorophores and Acid/Base Groups in Water-Soluble
Organic Compounds of PM2.5, Environ. Sci. Technol. Lett., 8, 108–113,
https://doi.org/10.1021/acs.estlett.0c00645, 2020.
Qin, Y., Qin, J., Wang, X., Xiao, K., Qi, T., Gao, Y., Zhou, X., Shi, S., Li, J., Gao, J., Zhang, Z., Tan, J., Zhang, Y., and Chen, R.: Measurement report: Investigation of pH- and particle-size-dependent chemical and optical properties of water-soluble organic carbon: implications for its sources and aging processes, Atmos. Chem. Phys., 22, 13845–13859, https://doi.org/10.5194/acp-22-13845-2022, 2022.
Raja, S., Raghunathan, R., Kommalapati, R. R., Shen, X., Collett, J. L., and
Valsaraj, K. T.: Organic composition of fogwater in the Texas–Louisiana
gulf coast corridor, Atmos. Environ., 43, 4214-4222, https://doi.org/10.1016/j.atmosenv.2009.05.029, 2009.
Saleh, R.: From Measurements to Models: Toward Accurate Representation of
Brown Carbon in Climate Calculations, Curr. Pollut. Rep., 6, 90–104,
https://doi.org/10.1007/s40726-020-00139-3, 2020.
Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S. J., Jia, L., Liu, J.,
Liu, Z., Fromer, N., Mi, Z., Meng, J., Deng, X., Li, Y., Lin, J., Schroeder,
H., Weisz, H., and Schellnhuber, H. J.: City-level climate change mitigation
in China, Sci. Adv., 4, eaaq0390, https://doi.org/10.1126/sciadv.aaq0390, 2018.
Song, C., Gyawali, M., Zaveri, R. A., Shilling, J. E., and Arnott, W. P.:
Light absorption by secondary organic aerosol fromá-pinene: Effects of
oxidants, seed aerosol acidity, and relative humidity, J. Geophys.
Res.-Atmos., 118, 11741–711749, https://doi.org/10.1002/jgrd.50767, 2013.
Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J.,
and Chakrabarty, R. K.: Atmospheric Photooxidation Diminishes Light
Absorption by Primary Brown Carbon Aerosol from Biomass Burning, Environ.
Sci. Technol. Lett., 4, 540–545, https://doi.org/10.1021/acs.estlett.7b00393, 2017.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The
impact of relative humidity on aerosol composition and evolution processes
during wintertime in Beijing, China, Atmos. Environ., 77, 927–934,
https://doi.org/10.1016/j.atmosenv.2013.06.019, 2013.
Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016.
Sun, Y. L., Zhang, Q., Schwab, J. J., Yang, T., Ng, N. L., and Demerjian, K. L.: Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements, Atmos. Chem. Phys., 12, 8537–8551, https://doi.org/10.5194/acp-12-8537-2012, 2012.
Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, J.,
and Querol, X.: Chemical characterization of humic-like substances (HULIS)
in PM2.5 in Lanzhou, China, Sci. Total Environ., 573, 1481–1490, https://doi.org/10.1016/j.scitotenv.2016.08.025, 2016.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020.
Tao, J., Zhang, Z., Zhang, L., Li, J., Wu, Y., Pei, C., and Nie, F.:
Quantifying the relative contributions of aqueous phase and photochemical
processes to water-soluble organic carbon formation in winter in a megacity
of South China, Chemosphere, 300, 134598, https://doi.org/10.1016/j.chemosphere.2022.134598, 2022.
Vidovic, K., Lasic Jurkovic, D., Sala, M., Kroflic, A., and Grgic, I.:
Nighttime Aqueous-Phase Formation of Nitrocatechols in the Atmospheric
Condensed Phase, Environ. Sci. Technol., 52, 9722–9730, https://doi.org/10.1021/acs.est.8b01161, 2018.
Wang, H., Zhang, L., Huo, T., Wang, B., Yang, F., Chen, Y., Tian, M., Qiao,
B., and Peng, C.: Application of parallel factor analysis model to decompose
excitation-emission matrix fluorescence spectra for characterizing sources
of water-soluble brown carbon in PM2.5, Atmos. Environ., 223, 117192, https://doi.org/10.1016/j.atmosenv.2019.117192, 2020.
Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W.,
Zhang, Y., Wu, C., Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P.,
Fu, P., Li, Y., Lee, H. C., Choi, H., Zhang, J., Liao, H., Chen, M., Sun,
Y., Ge, X., Martin, S. T., and Jacob, D. J.: Aqueous production of secondary
organic aerosol from fossil-fuel emissions in winter Beijing haze, P.
Natl. Acad. Sci. USA, 118, e2022179118, https://doi.org/10.1073/pnas.2022179118, 2021.
Wang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., Schwarz, J. P., and Perring, A. E.: Exploring the observational constraints on the simulation of brown carbon, Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, 2018.
Wang, Y., Hu, M., Lin, P., Tan, T., Li, M., Xu, N., Zheng, J., Du, Z., Qin,
Y., Wu, Y., Lu, S., Song, Y., Wu, Z., Guo, S., Zeng, L., Huang, X., and He,
L.: Enhancement in Particulate Organic Nitrogen and Light Absorption of
Humic-Like Substances over Tibetan Plateau Due to Long-Range Transported
Biomass Burning Emissions, Environ. Sci. Technol., 53, 14222–14232,
https://doi.org/10.1021/acs.est.9b06152, 2019.
Washenfelder, R. A., Attwood, A. R., Brock, C. A., Guo, H., Xu, L., Weber,
R. J., Ng, N. L., Allen, H. M., Ayres, B. R., Baumann, K., Cohen, R. C.,
Draper, D. C., Duffey, K. C., Edgerton, E., Fry, J. L., Hu, W. W., Jimenez,
J. L., Palm, B. B., Romer, P., Stone, E. A., Wooldridge, P. J., and Brown,
S. S.: Biomass burning dominates brown carbon absorption in the rural
southeastern United States, Geophys. Res. Lett., 42, 653–664, https://doi.org/10.1002/2014gl062444, 2015.
Wen, H., Zhou, Y., Xu, X., Wang, T., Chen, Q., Chen, Q., Li, W., Wang, Z.,
Huang, Z., Zhou, T., Shi, J., Bi, J., Ji, M., and Wang, X.: Water-soluble
brown carbon in atmospheric aerosols along the transport pathway of Asian
dust: Optical properties, chemical compositions, and potential sources, Sci.
Total Environ., 789, 147971, https://doi.org/10.1016/j.scitotenv.2021.147971, 2021.
Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E. A.,
Pradhan, B. B., Dangol, P. M., Panday, A. K., Wan, X., Bai, Z., Kang, S.,
Zhang, Q., and Cong, Z.: Water-Soluble Brown Carbon in Atmospheric Aerosols
from Godavari (Nepal), a Regional Representative of South Asia, Environ.
Sci. Technol., 53, 3471–3479, https://doi.org/10.1021/acs.est.9b00596, 2019.
Xu, J., Zhang, Q., Li, X., Ge, X., Xiao, C., Ren, J., and Qin, D.: Dissolved
organic matter and inorganic ions in a central Himalayan glacier–insights
into chemical composition and atmospheric sources, Environ. Sci. Technol.,
47, 6181–6188, https://doi.org/10.1021/es4009882, 2013.
Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593–12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.
Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, 2016.
Xu, J., Ge, X., Zhang, X., Zhao, W., Zhang, R., and Zhang, Y.: COVID-19
Impact on the Concentration and Composition of Submicron Particulate Matter
in a Typical City of Northwest China, Geophys. Res. Lett., 47,
e2020GL089035, https://doi.org/10.1029/2020GL089035, 2020a.
Xu, J., Hettiyadura, A. P. S., Liu, Y., Zhang, X., Kang, S., and Laskin, A.:
Regional Differences of Chemical Composition and Optical Properties of
Aerosols in the Tibetan Plateau, J. Geophys. Res.-Atmos., 125,
e2019JD031226, https://doi.org/10.1029/2019jd031226, 2020b.
Xu, J., Hettiyadura, A. P. S., Liu, Y., Zhang, X., Kang, S., and Laskin, A.:
Atmospheric Brown Carbon on the Tibetan Plateau: Regional Differences in
Chemical Composition and Light Absorption Properties, Environ. Sci. Tech.
Lett., 9, 219–225, https://doi.org/10.1021/acs.estlett.2c00016,
2022.
Xu, J. Z., Zhang, Q., Wang, Z. B., Yu, G. M., Ge, X. L., and Qin, X.: Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere, Atmos. Chem. Phys., 15, 5069–5081, https://doi.org/10.5194/acp-15-5069-2015, 2015.
Yan, G. and Kim, G.: Speciation and Sources of Brown Carbon in Precipitation
at Seoul, Korea: Insights from Excitation-Emission Matrix Spectroscopy and
Carbon Isotopic Analysis, Environ. Sci. Technol., 51, 11580–11587,
https://doi.org/10.1021/acs.est.7b02892, 2017.
Yang, H., Xu, G., Mao, H., and Wang, Y.: Spatiotemporal Variation in
Precipitation and Water Vapor Transport Over Central Asia in Winter and
Summer Under Global Warming, Front. Earth Sci., 8, 297, https://doi.org/10.3389/feart.2020.00297, 2020.
Yang, Y., Qin, J., Qi, T., Zhou, X., Chen, R., Tan, J., Xiao, K., Ji, D.,
He, K., and Chen, X.: Fluorescence characteristics of particulate
water-soluble organic compounds emitted from coal-fired boilers, Atmos.
Environ., 223, 117297, https://doi.org/10.1016/j.atmosenv.2020.117297,
2020.
Ye, Z., Liu, J., Gu, A., Feng, F., Liu, Y., Bi, C., Xu, J., Li, L., Chen, H., Chen, Y., Dai, L., Zhou, Q., and Ge, X.: Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry, Atmos. Chem. Phys., 17, 2573–2592, https://doi.org/10.5194/acp-17-2573-2017, 2017.
Yuan, W., Huang, R.-J., Yang, L., Ni, H., Wang, T., Cao, W., Duan, J., Guo,
J., Huang, H., and Hoffmann, T.: Concentrations, optical properties and
sources of humic-like substances (HULIS) in fine particulate matter in
Xi'an, Northwest China, Sci. Total Environ., 789, 147902, https://doi.org/10.1016/j.scitotenv.2021.147902, 2021.
Yue, S., Ren, L., Song, T., Li, L., Xie, Q., Li, W., Kang, M., Zhao, W.,
Wei, L., Ren, H., Sun, Y., Wang, Z., Ellam, R. M., Liu, C. Q., Kawamura, K.,
and Fu, P.: Abundance and Diurnal Trends of Fluorescent Bioaerosols in the
Troposphere over Mt. Tai, China, in Spring, J. Geophys. Res.-Atmos., 124,
4158–4173, https://doi.org/10.1029/2018jd029486, 2019.
Zeng, L., Zhang, A., Wang, Y., Wagner, N. L., Katich, J. M., Schwarz, J. P.,
Schill, G. P., Brock, C., Froyd, K. D., Murphy, D. M., Williamson, C. J.,
Kupc, A., Scheuer, E., Dibb, J., and Weber, R. J.: Global Measurements of
Brown Carbon and Estimated Direct Radiative Effects, Geophys. Res. Lett.,
47, e2020GL088747, https://doi.org/10.1029/2020GL088747, 2020.
Zeng, Y. L., Ning, Y. L., Shen, Z. X., Zhang, L. M., Zhang, T., Lei, Y. L.,
Zhang, Q., Li, G. H., Xu, H. M., Ho, S. S. H., and Cao, J. J.: The Roles of
N, S, and O in Molecular Absorption Features of Brown Carbon in PM2.5 in a
Typical Semi-Arid Megacity in Northwestern China, J. Geophys. Res.-Atmos.,
126, e2021JD034791, https://doi.org/10.1029/2021JD034791, 2021.
Zhang, Q., Shen, Z., Zhang, L., Zeng, Y., Ning, Z., Zhang, T., Lei, Y.,
Wang, Q., Li, G., Sun, J., Westerdahl, D., Xu, H., and Cao, J.:
Investigation of Primary and Secondary Particulate Brown Carbon in Two
Chinese Cities of Xi'an and Hong Kong in Wintertime, Environ. Sci. Technol.,
54, 3803–3813, https://doi.org/10.1021/acs.est.9b05332, 2020.
Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources,
composition and absorption Angstrom exponent of light-absorbing organic
components in aerosol extracts from the Los Angeles Basin, Environ. Sci.
Technol., 47, 3685–3693, https://doi.org/10.1021/es305047b,
2013.
Zhang, X., Ding, X., Talifu, D., Wang, X., Abulizi, A., Maihemuti, M., and
Rekefu, S.: Humidity and PM2.5 composition determine atmospheric light
extinction in the arid region of northwest China, J. Environ. Sci., 100,
279–286, https://doi.org/10.1016/j.jes.2020.07.007, 2021a.
Zhang, X., Xu, J., Kang, S., Sun, J., Shi, J., Gong, C., Sun, X., Du, H.,
Ge, X., and Zhang, Q.: Regional Differences in the Light Absorption
Properties of Fine Particulate Matter Over the Tibetan Plateau: Insights
From HR-ToF-AMS and Aethalometer Measurements, J. Geophys. Res.-Atmos., 126,
e2021JD035562, https://doi.org/10.1029/2021jd035562, 2021b.
Zhang, Y., Xu, J., Shi, J., Xie, C., Ge, X., Wang, J., Kang, S., and Zhang,
Q.: Light absorption by water-soluble organic carbon in atmospheric fine
particles in the central Tibetan Plateau, Environ. Sci. Pollut. R.,
24, 21386–21397, https://doi.org/10.1007/s11356-017-9688-8,
2017.
Zhang, Y., Shi, Z., Wang, Y., Liu, L., Zhang, J., Li, J., Xia, Y., Ding, X.,
Liu, D., Kong, S., Niu, H., Fu, P., Zhang, X., and Li, W.: Fine particles
from village air in northern China in winter: Large contribution of primary
organic aerosols from residential solid fuel burning, Environ. Pollut., 272,
116420, https://doi.org/10.1016/j.envpol.2020.116420, 2021.
Zhang, Y.-L., El-Haddad, I., Huang, R.-J., Ho, K.-F., Cao, J.-J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Slowik, J. G., Salazar, G., Prévôt, A. S. H., and Szidat, S.: Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China, Atmos. Chem. Phys., 18, 4005–4017, https://doi.org/10.5194/acp-18-4005-2018, 2018.
Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-6087-2015, 2015.
Zhao, W., Zhang, X., Zhai, L., Shen, X., and Xu, J.: Chemical
characterization and sources of submicron aerosols in Lhasa on the
Qinghai–Tibet Plateau: Insights from high-resolution mass spectrometry,
Sci. Total Environ., 815, 152866, https://doi.org/10.1016/j.scitotenv.2021.152866, 2022.
Zhou, Y., West, C. P., Hettiyadura, A. P. S., Niu, X., Wen, H., Cui, J., Shi, T., Pu, W., Wang, X., and Laskin, A.: Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China, Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, 2021.
Zhou, Y., West, C. P., Hettiyadura, A. P. S., Pu, W., Shi, T., Niu, X., Wen,
H., Cui, J., Wang, X., and Laskin, A.: Molecular Characterization of
Water-Soluble Brown Carbon Chromophores in Snowpack from Northern Xinjiang,
China, Environ. Sci. Technol., 56, 4173–4186, https://doi.org/10.1021/acs.est.1c07972, 2022.
Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang,
N. N.: Light absorption properties of brown carbon over the southeastern
Tibetan Plateau, Sci. Total Environ., 625, 246–251, https://doi.org/10.1016/j.scitotenv.2017.12.183, 2018.
Zou, C., Cao, T., Li, M., Song, J., Jiang, B., Jia, W., Li, J., Ding, X., Yu, Z., Zhang, G., and Peng, P.: Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China, Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, 2023.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:
Differentiating with fluorescence spectroscopy the sources of dissolved
organic matter in soils subjected to drying, Chemosphere, 38, 45–50, https://doi.org/10.1016/s0045-6535(98)00166-0, 1999.
Short summary
This study focus on coal-combustion-dominated aerosol in urban areas in northwestern China and combines the results of optical measurement and chemical analysis to deduce the evolution of these characteristics in the atmosphere, which has previously been unknown. The results provide insights into the effects of atmospheric processes and emissions on brown carbon properties.
This study focus on coal-combustion-dominated aerosol in urban areas in northwestern China and...
Altmetrics
Final-revised paper
Preprint