Ship tracks are enhanced regions of cloud brightness that trail behind ships that are known to be created by their effluent. They are widely used as observational test beds to deepen understanding of how pollution might affect cloud microphysical processes and climate at larger regional and global scales. This study uses satellite observations of cloud properties and records of ship position and their effluent to assess perturbations from ship emissions on cloud droplet number and liquid water path. The study found that, as expected, the droplet number perturbation in shiptracks scales with ship emission rates of aerosol particles. Surprisingly, however, the liquid water path in drizzling clouds increased by an amount that was nearly fixed. The observation points to novel non-linear threshold behaviours of relevance to representations of aerosol indirect effects in climate models.
Ship tracks are enhanced regions of cloud brightness that trail behind ships that are known to...
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content...