Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-10869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vortex preconditioning of the 2021 sudden stratospheric warming: barotropic–baroclinic instability associated with the double westerly jets
Ji-Hee Yoo
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722,
South Korea
Hye-Yeong Chun
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Yonsei University, Seoul, 03722,
South Korea
Min-Jee Kang
School of Earth and Environmental Sciences, Seoul National University,
Seoul, 08826, South Korea
Related authors
Ji-Hee Yoo and Hye-Yeong Chun
EGUsphere, https://doi.org/10.5194/egusphere-2025-748, https://doi.org/10.5194/egusphere-2025-748, 2025
Short summary
Short summary
This study revisits the Southern Hemisphere’s only major sudden stratospheric warming in September 2002, marked by an unprecedented polar vortex split. In addition to upward-propagating planetary wave 2 (PW2), westward PW2 generated in situ by barotropic–baroclinic instability, contributed to the vortex split. Unstable PW2 growth resulted from nonlinear wave-wave interactions and over-reflection. Vortex destabilization occurred as the anomalously poleward-shifted vortex reversed to easterlies.
Ji-Hee Yoo and Hye-Yeong Chun
EGUsphere, https://doi.org/10.5194/egusphere-2025-748, https://doi.org/10.5194/egusphere-2025-748, 2025
Short summary
Short summary
This study revisits the Southern Hemisphere’s only major sudden stratospheric warming in September 2002, marked by an unprecedented polar vortex split. In addition to upward-propagating planetary wave 2 (PW2), westward PW2 generated in situ by barotropic–baroclinic instability, contributed to the vortex split. Unstable PW2 growth resulted from nonlinear wave-wave interactions and over-reflection. Vortex destabilization occurred as the anomalously poleward-shifted vortex reversed to easterlies.
Soo-Hyun Kim, Jeonghoe Kim, Jung-Hoon Kim, and Hye-Yeong Chun
Atmos. Meas. Tech., 15, 2277–2298, https://doi.org/10.5194/amt-15-2277-2022, https://doi.org/10.5194/amt-15-2277-2022, 2022
Short summary
Short summary
The cube root of the energy dissipation rate (EDR), as a standard reporting metric of atmospheric turbulence, is estimated using 1 Hz commercial quick access recorder data from Korean-based national air carriers with two different types of aircraft. Various EDRs are estimated using zonal, meridional, and derived vertical wind components and the derived equivalent vertical gust. Characteristics of the observed EDR estimates using 1 Hz flight data are examined to observe strong turbulence cases.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
Cited articles
Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and
gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71,
4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics,
1st Edn., Vol. 40, edited by: Dmowska, R., and Holton, J. R., San Diego,
Calif., Academic Press Inc, p. 489, ISBN: 9780120585762, 1987.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584,
https://doi.org/10.1126/science.1063315, 2001.
Birner, T. and Albers, J. R.: Sudden Stratospheric Warmings and Anomalous
Upward Wave Activity Flux, Scientific Online Letters on the Atmosphere, 13,
8–12, https://doi.org/10.2151/sola.13A-002, 2017.
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings, Part I: Climatology and Modeling Benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Cho, H. O., Kang, M. J., Son, S. W., Hong, D. C., and Kang, J. M.: A
critical role of the North Pacific bomb cyclones in the onset of the 2021
sudden stratospheric warming, Geophys. Res. Lett., 49,
e2022GL099245, https://doi.org/10.1029/2022GL099245, 2022.
Dickinson, R. E.: Baroclinic instability of an unbounded zonal shear flow in
a compressible atmosphere, J. Atmos. Sci., 30,
1520–1527, https://doi.org/10.1175/1520-0469(1973)030<1520:BIOAUZ>2.0.CO;2, 1973.
Esler, J. G. and Scott, R. K.: Excitation of transient Rossby waves on the
stratospheric polar vortex and the barotropic sudden warming, J. Atmos.
Sci., 62, 3661–3682, https://doi.org/10.1175/JAS3557.1, 2005.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman,W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
GMAO (Global Modeling and Assimilation Office): MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/QBZ6MG944HW0, 2015a.
GMAO (Global Modeling and Assimilation Office): MERRA-2 tavg3_3d_udt_Np: 3d,3-Hourly, Time-Averaged,Pressure-Level,Assimilation, Wind Tendencies V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), [data set], https://doi.org/10.5067/CWV0G3PPPWFW, 2015b.
Hartmann, D. L.: Barotropic instability of the polar night jet stream, J.
Atmos. Sci., 40,
817–835, https://doi.org/10.1175/1520-0469(1983)040<0817:BIOTPN>2.0.CO;2, 1983.
Hitchcock, P. and Simpson, I. R.: Quantifying eddy feedbacks and forcings in
the tropospheric response to stratospheric sudden warmings, J. Atmos. Sci.,
73, 3641–3657, https://doi.org/10.1175/JAS-D-16-0056.1, 2016.
Iida, C., Hirooka, T., and Eguchi, N.: Circulation changes in the
stratosphere and mesosphere during the stratospheric sudden warming event in
January 2009, J. Geophys. Res.-Atmos., 119,
7104–7115, https://doi.org/10.1002/2013JD021252, 2014.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A.
K.: On the composite response of the MLT to major sudden stratospheric
warming events with elevated stratopause, J. Geophys. Res.-Atmos., 121,
4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., Wang, C., and Wang,
T.: The sudden stratospheric warming in January 2021, Environ. Res.
Lett., 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4, 2021.
Manney, G. L., Elson, L. S., Mechoso, C. R., and Farrara, J. D.:
Planetary-scale waves in the Southern Hemisphere winter and early spring
stratosphere: Stability analysis, J. Atmos. Sci., 48,
2509–2523, https://doi.org/10.1175/1520-0469(1991)048<2509:PSWITS>2.0.CO;2, 1991.
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S.,
Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave
Limb Sounder observations of dynamics and transport during the
record-breaking 2009 Arctic stratospheric major warming, Geophys. Res.
Lett., 36, 12, https://doi.org/10.1029/2009GL038586, 2009.
Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the
Winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883,
https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970.
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J.
Atmos. Sci., 28,
1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971.
McFarlane, N. A.: The effect of orographically excited gravity wave drag on
the general circulation of the lower stratosphere and troposphere, J. Atmos.
Sci., 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the
GEOS-5 atmospheric general circulation model: evolution from MERRA to
MERRA2, Geosci. Model Dev., 8, 1339–1356,
https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Palmer, T. N.: Aspects of stratospheric sudden warmings studied from a
transformed Eulerian-mean viewpoint, J. Geophys. Res., 86, 9679–9687,
https://doi.org/10.1029/JC086iC10p09679, 1981.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L.,
Chau, J. L., Goncharenko, L. P., and Siddiqui, T. A.: Analysis and hindcast
experiments of the 2009 sudden stratospheric warming in WACCMX + DART, J.
Geophys. Res.-Space, 123, 3131–3153, https://doi.org/10.1002/2017JA025107,
2018.
Plumb, R. A.: Instability of the distorted polar night vortex: A theory of
stratospheric warmings, J. Atmos. Sci., 38, 2514–2531,
https://doi.org/10.1175/1520-0469(1981)038<2514:IOTDPN>2.0.CO;2, 1981.
Rao, J. and Garfinkel, C. I.: CMIP5/6 Models Project Little Change in the
Statistical Characteristics of Sudden Stratospheric Warmings in the 21st
Century, Environ. Res. Lett., 16, 034024,
https://doi.org/10.1088/1748-9326/abd4fe, 2021.
Rao, J., Garfinkel, C. I., Wu, T., Lu, Y., Lu, Q., and Liang, Z.: The
January 2021 sudden stratospheric warming and its prediction in subseasonal
to seasonal models, J. Geophys. Res.-Atmos., 126, e2021JD035057,
https://doi.org/10.1029/2021JD035057, 2021.
Rhodes, C. T., Limpasuvan, V., and Orsolini, Y. J.: Eastward-propagating
planetary waves prior to the January 2009 sudden stratospheric warming, J.
Geophys. Res.-Atmos., 126,
e2020JD033696, https://doi.org/10.1029/2020JD033696, 2021.
Salby, M. L.: Fundamentals of atmospheric physics, no. v. 61 in
International geophysics series, Academic Press, San Diego, 648 pp., ISBN
9780080532158, 1996.
Sato, K. and Nomoto, M.: Gravity wave–induced anomalous potential
vorticity gradient generating planetary waves in the winter mesosphere, J.
Atmos. Sci., 72, 3609–3624, https://doi.org/10.1175/JAS-D-15-0046.1, 2015.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K.W.,
and Baker, N. L.: Case studies of the mesospheric response to recent minor,
major, and extended stratospheric warmings, J. Geophys. Res., 115, D00N03,
https://doi.org/10.1029/2010JD014114, 2010.
Song, B. G., Chun, H. Y., and Song, I. S.: Role of gravity waves in a
vortex-split sudden stratospheric warming in January 2009, J. Atmos.
Sci., 77, 3321–3342, https://doi.org/10.1175/JAS-D-20-0039.1, 2020.
Yamazaki, Y., Matthias, V., and Miyoshi, Y.: Quasi-4-Day Wave: Atmospheric
Manifestation of the First Symmetric Rossby Normal Mode of Zonal Wavenumber
2, J. Geophys. Res.-Atmos., 126,
e2021JD034855, https://doi.org/10.1029/2021JD034855, 2021.
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with...
Altmetrics
Final-revised paper
Preprint