Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-9161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-22-9161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Karin Ardon-Dryer
CORRESPONDING AUTHOR
Atmospheric Science Group, Department of Geosciences, Texas Tech
University, Lubbock, TX, USA
Mary C. Kelley
Atmospheric Science Group, Department of Geosciences, Texas Tech
University, Lubbock, TX, USA
Related authors
Luis A. Ladino, Karin Ardon-Dryer, Diana L. Pereira, Ulrike Proske, Zyanya Ramirez-Diaz, Antonia Velicu, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2025-4499, https://doi.org/10.5194/egusphere-2025-4499, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
A survey and literature metadata analysis from the cloud physics community are used to investigate the state of diversity, equity and inclusion in the cloud physics research community. We show the evolution of gender contributions to cloud physics and the inclusion of scientists from the Global South. The publication analysis reveals the rate of men and women dropping out of the field is not different, however, gender balance was better achieved when women led publications compared to men.
John Garber and Karin Ardon-Dryer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4300, https://doi.org/10.5194/egusphere-2025-4300, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study aimed to develop a calibration using a multivariate linear regression for the Clarity Node S for PM1, PM2.5, and PM10. Calibrations for PM1 and PM2.5 were successfully implemented using internal temperature, relative humidity, and EDM-180 PM10. Comparison of the calibration of sensors for eight months showed improvements in detecting spikes in high PM concentrations and maintained good correlation with a reference monitor.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Karin Ardon-Dryer, Yuval Dryer, Jake N. Williams, and Nastaran Moghimi
Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, https://doi.org/10.5194/amt-13-5441-2020, 2020
Short summary
Short summary
The PurpleAir PA-II is a low-cost sensor for monitoring changes in the concentrations of particulate matter of various sizes. This study examined the behaviour of multiple PA-II units in four locations in the USA under atmospheric conditions when exposed to a variety of pollutants and different PM2.5 concentrations. The PA-II unit is a promising tool for measuring PM2.5 concentrations and identifying relative concentration changes, as long as the
PA-II PM2.5 values can be corrected.
Luis A. Ladino, Karin Ardon-Dryer, Diana L. Pereira, Ulrike Proske, Zyanya Ramirez-Diaz, Antonia Velicu, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2025-4499, https://doi.org/10.5194/egusphere-2025-4499, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
A survey and literature metadata analysis from the cloud physics community are used to investigate the state of diversity, equity and inclusion in the cloud physics research community. We show the evolution of gender contributions to cloud physics and the inclusion of scientists from the Global South. The publication analysis reveals the rate of men and women dropping out of the field is not different, however, gender balance was better achieved when women led publications compared to men.
John Garber and Karin Ardon-Dryer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4300, https://doi.org/10.5194/egusphere-2025-4300, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study aimed to develop a calibration using a multivariate linear regression for the Clarity Node S for PM1, PM2.5, and PM10. Calibrations for PM1 and PM2.5 were successfully implemented using internal temperature, relative humidity, and EDM-180 PM10. Comparison of the calibration of sensors for eight months showed improvements in detecting spikes in high PM concentrations and maintained good correlation with a reference monitor.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Karin Ardon-Dryer, Yuval Dryer, Jake N. Williams, and Nastaran Moghimi
Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, https://doi.org/10.5194/amt-13-5441-2020, 2020
Short summary
Short summary
The PurpleAir PA-II is a low-cost sensor for monitoring changes in the concentrations of particulate matter of various sizes. This study examined the behaviour of multiple PA-II units in four locations in the USA under atmospheric conditions when exposed to a variety of pollutants and different PM2.5 concentrations. The PA-II unit is a promising tool for measuring PM2.5 concentrations and identifying relative concentration changes, as long as the
PA-II PM2.5 values can be corrected.
Cited articles
Abdullaev, S. F. and Sokolik, I.: Assessment of the Influences of Dust
Storms on Cotton Production in Tajikistan, in: Landscape Dynamics of Drylands across Greater
Central Asia: People, Societies and Ecosystems, edited by: Gutman, G., Chen, J.,
Henebry, G., and Kappas, M., Landscape Series, Springer,
Cham, 17, https://doi.org/10.1007/978-3-030-30742-4_6, 2020.
Achakulwisut, P., Mickley L., and Anenberg S.: Drought-sensitivity of fine
dust in the US Southwest: implications for air quality and public health
under future climate change, Environ. Res. Lett., 13, 054025, https://doi.org/10.1088/1748-9326/aabf20, 2018.
Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust in
the atmosphere, Sci. Adv., 6, 15, https://doi.org/10.1126/sciadv.aaz9507,
2020.
Aghababaeian, H., Ostadtaghizadeh, A., Ardalan, A., Asgary, A., Akbary, M.,
Yekaninejad, M. S., and Stephens, C.: Global Health Impacts of Dust Storms: A
Systematic Review, Environ. Health Insights, 15, 1–28,
https://doi.org/10.1177/11786302211018390, 2021.
Alghamdi, M. A., Almazroui, M., Shamy, M., Redal, M. A., Alkhalaf, A. K.,
Hussein, M. A., and Khoder, M. I.: Characterization and elemental composition
of atmospheric aerosol loads during springtime dust storm in western Saudi
Arabia, Aerosol Air Qual. Res., 15, 440–453,
https://doi.org/10.4209/aaqr.2014.06.0110, 2015.
Al-Hemoud, A., Al-Dousari, A., Misak, R., Al-Sudairawi, M., Naseeb, A.,
Al-Dashti, H., and Al-Dousari, N.: Economic impact and risk assessment of
sand and dust storms (SDS) on the Oil and gas Industry in Kuwait,
Sustainability, 11, 200, https://doi. org/10.3390/su11010200, 2019.
Ardon-Dryer, K. and Levin, Z.: Ground-based measurements of immersion freezing in the eastern Mediterranean, Atmos. Chem. Phys., 14, 5217–5231, https://doi.org/10.5194/acp-14-5217-2014, 2014.
Ardon-Dryer, K., Mock, C., Reyes, J., and Lahav, G.: The effect of dust
storm particles on single human lung cancer cells, Environ. Res., 181,
108891, https://doi.org/10.1016/j.envres.2019.108891, 2020.
Ardon-Dryer, K., Chmielewski, V., Burning E., and Xueting X.: Changes of
Electric Field, Aerosol, and Wind Covariance in Different Blowing Dust Days
in West Texas, Aeolian Res., 54,
100762,
https://doi.org/10.1016/j.aeolia.2021.100762, 2021.
Ardon-Dryer, K., Kelley, M. C., Xueting, X., and Dryer, Y.: The Aerosol Research Observation Station (AEROS), Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, 2022.
Bhattachan, A., Okin, G. S., Zhang, J., Vimal, S., and Lettenmaier, D. P.:
Characterizing the role of wind and dust in traffic accidents in California,
GeoHealth 3, 328–336, https://doi.org/10.1029/2019GH000212, 2019.
Bogan, M., Al, B., Kul, S., Zengin, S., Oktay, M., Sabak, M., Gumusboga, H.,
and Bayram, H.: The effects of desert dust storms, air pollution, and
temperature on morbidity due to spontaneous abortions and toxemia of
pregnancy: 5-year analysis, Int. J. Biometeorol., 65, 1733–1739,
https://doi.org/10.1007/s00484-021-02127-8, 2021.
Bouet, C., Labiadh, M. T., Rajot, J. L., Bergametti, G., Marticorena, B.,
Henry des Tureaux, T., Ltifi, M., Sekrafi, S., and Féron, A.: Impact of
Desert Dust on Air Quality: What is the Meaningfulness of Daily PM Standards
in Regions Close to the Sources? The Example of Southern
Tunisia, Atmosphere, 10, 452, https://doi.org/10.3390/atmos10080452,
2019.
Brey, S. J., Pierce, J. R., Barnes, E. A., and Fischer, E. V.: Estimating the
Spread in Future Fine Dust Concentrations in the Southwest United States, J.
Geophys. Res., 125, e2019JD031735, https://doi.org/10.1029/2019JD031735, 2020.
Brilli, L., Carotenuto, F., Andreini, B. P., Cavaliere, A., Esposito, A.,
Gioli, B., Martelli, F., Stefanelli, M., Vagnoli, C., Venturi, S., Zaldei,
A., and Gualtieri, G.: Low-Cost Air Quality Stations' Capability to
Integrate Reference Stations in Particulate Matter Dynamics
Assessment, Atmosphere, 12, 1065,
https://doi.org/10.3390/atmos12081065,2021
Brunekreef, B. and Forsberg, B.: Epidemiological evidence of effects of
coarse airborne particles on health, Eur. Respir. J., 26, 309–318,
https://doi.org/10.1183/09031936.05.00001805, 2005.
Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., Zhang, X., and
Chen, J.: The roles of mineral dust as cloud condensation nuclei and ice
nuclei during the evolution of a hailstorm, J. Geophys. Res.-Atmos., 124,
14262–14284, https://doi.org/10.1029/2019JD031403, 2019.
Chun, Y., Boo, K.-O., Kim, J., Park, S.-U., and Lee, M.: Synopsis, transport,
and physical characteristics of Asian dust in Korea, J. Geophys. Res.-Atmos., 106, 18461–18469, https://doi.org/10.1029/2001JD900184, 2001.
Claiborn, C. S., Finn, D., Larson, T. V., and Koenig, J. Q.: Windblown dust
contributes to high PM2.5 concentrations, J. Air Waste Manage.,
50, 1440–1445, https://doi.org/10.1080/10473289.2000.10464179, 2000.
Clements, A. L., Fraser, M. P., Upadhyay, N., Herckes, P., Sundblom, M.,
Lantz, J., and Solomon, P.A.: Characterization of summertime coarse
particulate matter in the Desert Southwest – Arizona, USA, J. Air Waste
Manage., 63, 764–772, https://doi.org/10.1080/10962247.2013.787955,
2013.
Crooks, J. L., Cascio, W. E., Percy, M. S., Reyes, J., Neas, L. M., and Hilborn,
E. D.: The association between dust storms and daily non-accidental mortality
in the United States, 1993–2005, Environ. Health Persp., 124, 1735–1743,
https://doi.org/10.1289/ehp216, 2016.
D'Almeida, G. A. and Schütz, L.: Number, Mass and Volume Distributions of
Mineral Aerosol and Soils of the Sahara, J. Clim. Appl. Meteorol., 22, 233–243,
https://doi.org/10.1175/1520-0450(1983)022<0233:NMAVDO>2.0.CO;2,
1983.
Dastoorpoor, M., Idani, E., Goudarzi, G., and Khanjani, N.: Acute effects of air
pollution on spontaneous abortion, premature delivery, and stillbirth in
Ahvaz, Iran: a time-series study, Environ. Sci. Pollut. R., 25,
5447–5458, https://doi.org/10.1007/ s11356-017-0692-9, 2018.
Deary, M. and Griffiths, S.: A novel approach to the development of 1-hour
threshold concentrations for exposure to particulate matter during episodic
air pollution events, J. Hazard. Mater., 418, 126334,
https://doi.org/10.1016/j.jhazmat.2021.126334, 2021.
Diokhane, A. M., Jenkins, N., Manga, M. S., Drame, and Mbodji, B.: Linkages
between observed, modeled Saharan dust loading and meningitis in Senegal
during 2012 and 2013, Int. J. Biometeorol., 60, 557–575,
https://doi.org/10.1007/s00484-015-1051-5, 2016.
Drakaki, E., Amiridis, V., Tsekeri, A., Gkikas, A., Proestakis, E., Mallios, S., Solomos, S., Spyrou, C., Marinou, E., Ryder, C., Bouris, D., and Katsafados, P.: Modelling coarse and giant desert dust particles, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-94, in review, 2022.
EPA (United States Environmental Protection Agency): NAAQS table,
https://www.epa.gov/criteria-air-pollutants/naaqs-table (last access: 11 September 2021), 2016.
Gillette, D. A., Blifford Jr., I. H., and Fryrear, D. W.: The influence of wind
velocity on the size distributions of aerosols generated by the wind erosion
of soils, J. Geophys. Res., 79, 4068–4075,
https://doi.org/10.1029/JC079i027p04068, 1974.
Goudie, A. S. and Middleton, N. J.: Desert Dust in the Global System, Springer Verlag, Heidelberg, https://doi.org/10.1007/3-540-32355-4, 2006.
Goudie, A. S.: Desert Dust and Human Health Disorders, Environ. Int., 63,
101–13, https://doi.org/10.1016/j.envint.2013.10.011, 2014.
Graff, D. W., Cascio, W. E., Rappold, A., Zhou, H., Huang, Y. C., and Devlin,
R. B.: Exposure to concentrated coarse air pollution particles causes mild
cardiopulmonary effects in healthy young adults, Environ Health Persp.,
117, 1089–1094, https://doi.org/10.1289/ehp0900558, 2009.
Griffiths, S. D., Chappell, P., Entwistle, J. A., Kelly, F. J., and Deary,
M. E.: A study of particulate emissions during 23 major industrial fires:
Implications for human health, Environ. Int., 112, 310–323,
https://doi.org/10.1016/j.envint.2017.12.018, 2018.
Grimm 11-D: MODEL 11D the dust decoder,
https://www.grimm-aerosol.com/products-en/dust-monitors/the-dust-decoder/11-d/,
last access: 5 August 2021.
Hahnenberger, M. and Nicoll, K.: Meteorological Characteristics of Dust
Storm Events in the Eastern Great Basin of Utah, U.S.A., Atmos. Environ.,
60, 601–612, https://doi.org/10.1016/j.atmosenv.2012. 06.029, 2012.
Hallar, A. G., Chirokova, G., McCubbin, I., Painter, T. H., Wiedinmyer, C.,
and Dodson, C.: Atmospheric bioaerosols transported via dust storms in the
western United States, Geophys. Res. Lett., 38, L17801,
https://doi.org/10.1029/2011GL048166, 2011.
Hand, J. L., White, W. H., Gebhart, K. A., Hyslop, N. P., Gill, T. E., and
Schichtel, B. A.: Earlier onset of the spring fine dust season in the
southwestern United States, Geophys. Res. Lett., 43, 4001–4009,
https://doi.org/10.1002/2016GL068519, 2016.
Herrera-Molina, E., Gill, T. E., Ibarra-Mejia, G., and Jeon, S.: Associations
between Dust Exposure and Hospitalizations in El Paso, Texas, USA,
Atmosphere, 12, 1413, https://doi.org/10.3390/atmos12111413, 2021.
Host, S., Larrieu, S., Pascal, Blanchard, L., Declercq, M., Fabre, C.,
Jusot, P., Chardon, J. F., Le Tertre, B., Wagner, A., Prouvost, V., and Lefranc,
H.: Short-term associations between fine and coarse particles and hospital
admissions for cardiorespiratory diseases in six French cities, Occup.
Environ. Med., 65, 544–551,
https://doi.org/10.1136/oem.2007.036194, 2008.
Hyde, P., Mahalov, A., and Li, J.: Simulating the meteorology and PM10
concentrations in Arizona dust storms using the Weather Research and
Forecasting model with Chemistry (Wrf-Chem), J. Air Waste Manage., 68,
177–195, https://doi.org/10.1080/10962247.2017.1357662, 2018.
Idso, S. B.: Dust Storms, Sci. Am., 235, 108–115, 1976.
Jaafar, M., Baalbaki, R., Mrad, R., Daher, N., Shihadeh, A., Sioutas, C.,
and Saliba, N. A.: Dust episodes in Beirut and their effect on the chemical
composition of coarse and fine particulate matter, Sci. Total Environ., 496,
75–83, 2014.
Jaafari, J., Naddafi, K., Yunesian, M., Nabizadeh, R., Hassanvand, M. S.,
Ghozikali, M. G., Nazmara, S., Shamsollahi, H. R., and Yaghmaeian, K.: Study
of PM10, PM2.5, and PM1 levels in during dust storms and local air pollution
events in urban and rural sites in Tehran, Hum. Ecol. Risk Assess.,
24, 482–493, https://doi.org/10.1080/10807039.2017.1389608, 2018.
Jones, B. A.: After the Dust Settles: The Infant Health Impacts of Dust
Storms, J. Assoc. Environ. Resour. Econ., 7, 6, https://doi.org/10.1086/710242,
2020.
Kandler, K., Schutz, L., Deutscher, C., Ebert, M., Hofmann, H., Jackel, S.,
Jaenicke, R., Knippertz, P., Lieke, K., Massling, A., Petzold, A.,
Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S., and Weinbruch, S.:
Size distribution, mass concentration, chemical and mineralogical
composition and derived optical parameters of the boundary layer aerosol at
Tinfou, Morocco, during SAMUM 2006, Tellus B, 61,
32–50, https://doi.org/10.1111/j.1600-0889.2008.00385.x, 2009.
Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F., and Querol,
X.: Health effects from Sahara dust episodes in Europe: literature review
and research gaps, Environ. Int., 47, 107–114,
https://doi.org/10.1016/j.envint.2012.06.012, 2012.
Katra, I. and Krasnov, H.: Exposure Assessment of Indoor PM Levels During
Extreme Dust Episodes, Int. J. Environ. Res., 17, 1625, https://doi.org/10.3390/ijerph17051625,
2020.
Kelley, M. C. and Ardon-Dryer, K.: Analyzing two decades of dust events on
the Southern Great Plains region of West Texas, Atmos. Pollut. Res., 12,
101091, https://doi.org/10.1016/j.apr.2021.101091, 2021.
Kelley, M. C., Brown, M. M., Fedler, C. B., and Ardon-Dryer, K.: Long-term
Measurements of PM2.5 Concentrations in Lubbock, Texas, Aerosol Air Qual.
Res., 20, 1306–1318, https://doi.org/10.4209/aaqr.2019.09.0469, 2020.
Knippertz, P.: Meteorological Aspects of Dust Storms, in: Mineral Dust: A Key Player in the Earth System, edited by: Knippertz, P. and Stuut, J. B., Springer, Dordrecht, 121–147, https://doi.org/10.1007/978-94-017-8978-3_6, 2014.
Krasnov, H., Katra, I., Koutrakis, P., and Michael, D. F.: Contribution of
dust storms to PM10 levels in an Urban arid environment, J. Air Waste Manage., 64, 89–94, https://doi.org/10.1080/10962247.2013.841599, 2014.
Krasnov, H., Katra, I., and Friger, M.: Increase in dust storm related PM10
concentrations: A time series analysis of 2001–2015, Environ. Pollut., 213,
36–42, https://doi.org/10.1016/j.envpol.2015.10.021, 2016.
Lau, W. K. M., Kyu-Myong, K., Chun, Z., Ruby, L. L. and Sang-Hun, P.: Impact of
Dust-Cloud-Radiation-Precipitation Dynamical Feedback on
Subseasonal-to-Seasonal Variability of the Asian Summer Monsoon in Global
Variable-Resolution Simulations With MPAS-CAM5, Front. Earth Sci., 8, 226,
https://doi.org/10.3389/feart.2020.00226, 2020.
Linares, C., Tobías, A., and Díaz, J.: Is there new scientific
evidence to justify reconsideration of the current WHO guidelines for
particulate matter during dust intrusions?, Sci. Total Environ., 408,
2283–22834, https://doi.org/10.1016/j.scitotenv.2010.02.005, 2010.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward,
D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res., 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Malig, B. J. and Ostro, B. D.: Coarse particles and mortality: evidence from a
multi-city study in California, J. Occup. Environ. Med., 66, 832–839,
https://doi.org/10.1136/oem.2008.045393, 2009.
Martinelli, F., Reagan, R. L., Uratsu, S. L., Phu, M. L., Albrecht, U., Zhao,
W., Davis, C. E., Bowman, K. D., and Dandekar, A. M.: Gene Regulatory Networks
Elucidating Huanglongbing Disease Mechanisms, PLoS ONE, 8, e74256,
https://doi.org/10.1371/journal.pone.0074256, 2013.
Meng, J., Huang, Y., Leung, D. M., Li, L., Adebiyi, A. A., Ryder, C. L.,
Mahowald, N. M., and Kok, J. F.: Improved Parameterization for the Size
Distribution of Emitted Dust Aerosols Reduces Model Underestimation of Super
Coarse Dust, Geophys. Res. Lett., 49, e2021GL097287,
https://doi.org/10.1029/2021GL097287, 2022.
Middleton, M. J.: Desert dust hazards: A global review, Aeolian Res., 24,
53–63, https://doi.org/10.1016/j.aeolia.2016.12.001, 2017.
Middleton, N.: Health in dust belt cities and beyond – an essay by Nick
Middleton, BMJ, 371, m3089, https://doi.org/10.1136/bmj.m3089, 2020.
Miller, R. L. and Perlwitz, T. J.: Surface radiative forcing by soil dust
aerosols and the hydrologic cycle, J. Geophys. Res.-Atmos., 109, D04203,
https://doi.org/10.1029/2003JD004085, 2004.
Novlan, D. J., Hardiman, M., and Gill, T. E.: A synoptic climatology of blowing dust events in El Paso, Texas from 1932–2005,
National Weather Service,
https://www.weather.gov/media/epz/research/elp07-2.pdf (last access: 14 July 2022), 2007.
Ordou, N. and Agranovski, I. E.: Contribution of Fine Particles to Air
Emission at Different Phases of Biomass Burning, Atmosphere, 10, 278,
https://doi.org/10.3390/atmos10050278, 2019.
O'Sullivan, D., Marenco, F., Ryder, C. L., Pradhan, Y., Kipling, Z., Johnson, B., Benedetti, A., Brooks, M., McGill, M., Yorks, J., and Selmer, P.: Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations, Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, 2020.
Pérez, L., Tobias, A., Querol, X., Kunzli, N., Pey, J., Alastuey, A.,
Viana, M., Valero, N., Gonzalez-Cabre, M., and Sunyer, J.: Coarse particles
from Saharan dust and daily mortality, Epidemiology, 19, 800–807,
https://doi.org/10.1097/ede.0b013e31818131cf, 2008.
Pio, C. A., Cardoso, J. G., Cerqueira, M. A., Calvo, A., Nunes, T. V., Alves,
C. A., Custódio, D., Almeida, S. M., and Almeida-Silva, M.: Seasonal
variability of aerosol concentration and size distribution in Cape Verde
using a continuous aerosol optical spectrometer, Front. Environ. Sci., 2, 1–15,
https://doi.org/10.3389/fenvs.2014.00015, 2014.
Pu, B. and Ginoux, P.: Projection of American dustiness in the late
21st century due to climate change, Sci. Rep.-UK, 7, 5553,
https://doi.org/10.1038/s41598-017-05431-9, 2017.
Reicher, N., Budke, C., Eickhoff, L., Raveh-Rubin, S., Kaplan-Ashiri, I., Koop, T., and Rudich, Y.: Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean, Atmos. Chem. Phys., 19, 11143–11158, https://doi.org/10.5194/acp-19-11143-2019, 2019.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Reynolds, R. L., Goldstein, H. L., Moskowitz, B. M., Kokaly, R. F., Munson,
S. M., Solheid, P., Breit, G. N., Lawrence, C. R., and Derry, J.: Dust
deposited on snow cover in the San Juan Mountains, Colorado, 2011–2016:
Compositional variability bearing on snow-melt effects, J. Geophys. Res.-Atmos., 125, e2019JD032210,
https://doi-org.lib-e2.lib.ttu.edu/10.1029/2019JD032210, 2020.
Rublee, C., Sorensen, C., Lemery, J., Wade, T., Sams, E., Hilborn, E., and
Crooks, J.: Associations between dust storms and intensive care unit
admissions in the United States, 2000–2015, GeoHealth, 4, e2020GH000260,
https://doi.org/10.1029/2020GH000260, 2020.
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.: Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, 2019.
Saraga, D., Maggos, T., Sadoun, E., Fthenou, E., Hassan, H., Tsiouri, V.,
Karavoltsos, S., Sakellari, A., Vasilakos, C., and Kakosimos, K.: Chemical
Characterization of Indoor and Outdoor Particulate Matter (PM2.5, PM10) in
Doha, Qatar, Aerosol Air Qual. Res., 17, 1156–1168,
https://doi.org/10.4209/aaqr.2016.05.0198, 2017.
Sarkar, S., Chauhan, A., Kumar, R., and Singh, R.P.: Impact of deadly dust
storms (May 2018) on air quality, meteorological, and atmospheric parameters
over the northern parts of India, GeoHealth, 3, 67–80,
https://doi.org/10.1029/2018GH000170, 2019.
Stout, J.: Dust and environment in the Southern High Plains of North
America, J. Arid Environ., 47, 425–441,
https://doi.org/10.1006/jare.2000.0732, 2001.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006.
Tobias, A., Karanasiou, A., Amato, F., Roqué, M., and Querol, X.: Health
effects of desert dust and sand storms: a systematic review and metaanalysis
protocol, BMJ Open, 9, e029876,
https://doi.org/10.1136/bmjopen-2019-029876, 2019.
Tong, D. Q., Wang, J. X. L., Gill, T. E., Lei, H., and Wang, B.: Intensified
dust storm activity and Valley fever infection in the southwestern United
States, Geophys. Res. Lett., 44, 4304–4312, https://doi.org/10.1002/2017GL073524, 2017.
Toure, N. O., Gueye, A., Mbow-Diokhane, G. S., Jenkins, M., Li, M. S., Drame,
K. A., Coker, R., and Thiam, K.: Observed and modeled seasonal air quality
and respiratory health in Senegal during 2015 and 2016, Geo Health, 3,
423–442, https://doi.org/10.1029/2019GH000214, 2019.
Tozer, P. and Leys, J.: Dust storms – what do they really cost?, Rangel.
J., 35, 131–142, https://doi.org/10.1071/RJ12085, 2013.
Tsai, J. H., Huang, K. L., Lin, N. H., Chen, S. J., Lin, T. C., Chen, S. C., Lin,
C. C., Hsu, S. C., and Lin, W. Y.: Influence of an Asian Dust Storm and
Southeast Asian Biomass Burning on the Characteristics of Seashore
Atmospheric Aerosols in Southern Taiwan, Aerosol Air Qual. Res., 12,
1105–1115, https://doi.org/10.4209/aaqr.2012.07.0201, 2012.
TSI: DUSTTRAK™DRX Aerosol Monitor Model 8533/8534/8533EP,
Operation and Service Manual, P/N 6001898 Revision S,
https://www.tsi.com/getmedia/3699890e-4adf-452f-9029-f3725612d5d1/8533-8534-DustTrak_DRX-6001898-Manual-US?ext=.pdf, last access: 4 June 2021.
van der Does, M., Knippertz, P., Zschenderlein, P., Giles Harrison, R., and
Stuut, J.B.W.: The mysterious long-range transport of giant mineral dust
particles, Sci. Adv., 4, eaau2768, https://doi.org/10.1126/sciadv.aau2768, 2018.
Wang, C., Jeong, G. R., and Mahowald, N.: Particulate absorption of solar radiation: anthropogenic aerosols vs. dust, Atmos. Chem. Phys., 9, 3935–3945, https://doi.org/10.5194/acp-9-3935-2009, 2009.
Weinzierl, B., Ansmann, A., Prospero, J.M., Althausen, D., Benker, N.,
Chouza, F., Dollner, M., Farrell, D., Fomba, W.K., Freudenthaler, V.,
Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K.,
Kristensen, T.B., Mayol-Bracero, O.L., Müller, T., Reitebuch, O., Sauer,
D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano, C., and
Walser, A.: The Saharan aerosol long-range transport and
aerosol-cloud-interaction experiment: Overview and selected highlights,
B. Am. Meteorol. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1,
2017.
WHO (World Health Organization): WHO Air Quality Guidelines for Particulate
Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, Global Update 2005,
Summary of Risk Assessment, WHO, Geneva, https://apps.who.int/iris/handle/10665/69477 (last access: 1 February 2022), 2006.
WHO (global air quality guidelines): particulate matter (PM2.5 and
PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide, World Health
Organization, https://apps.who.int/iris/handle/10665/345329 (last access: 1 February 2022), 2021.
Zhang, X., Zhao, L., Tong, D.Q., Wu, G., Dan, M., and Teng, B.: A systematic
review of global desert dust and associated human health
effects, Atmosphere, 7, 158, https://doi.org/10.3390/atmos7120158, 2016.
Short summary
Changes in the particle size distribution and particulate matter concentrations during different dust events in West Texas were examined. Analysis based on different timescales showed that current common methods used to evaluate the impact of dust events on air quality will not capture the true impact of short (convective) dust events and, therefore, do not provide an insightful understanding of their impact on the environment and human health.
Changes in the particle size distribution and particulate matter concentrations during different...
Altmetrics
Final-revised paper
Preprint