Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-7861-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7861-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Yetao Cen
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, Anhui, China
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, Anhui, China
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, Anhui, China
James M. Russell III
Center for Atmospheric Sciences, Hampton University, Hampton, VA, USA
Xiankang Dou
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
CAS Center for Excellence in Comparative Planetology, University of
Science and Technology of China, Hefei, Anhui, China
School of Electronic Information, Wuhan University, Wuhan, Hubei,
China
Related authors
No articles found.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Cited articles
Auclair-Desrotour, P., Laskar, J., and Mathis, S.: Atmospheric tides and
their consequences on the rotational dynamics of terrestrial planets,
EAS Publications, 82, 81–90,
https://doi.org/10.1051/eas/1982008, 2017.
Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018.
Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: Implementation
of a gravity wave source spectrum parameterization dependent on the
properties of convection in the Whole Atmosphere Community Climate Model
(WACCM), J. Geophys. Res., 110, D10108,
https://doi.org/10.1029/2004JD005504, 2015.
Calvo-Fernández, N., Herrera, R. G., Puyol, D. G. , Martín, E. H.,
García, R. R., Presa, L. G., and Rodriguez, P. R.: Analysis of the enso
signal in tropospheric and stratospheric temperatures observed by MSU,
1979–2000, J. Climate, 17, 3934–3946, https://doi.org/10.1175/1520-0442(2004)017<3934:aotesi>2.0.co;2, 2004.
Cen, Y.: 1979–2014 SDWACCM data, figshare [data set], https://doi.org/10.6084/m9.figshare.19777918, 2022.
Chapman, S. and Lindzen, R.: Atmospheric tides – thermal and gravitational, p. 200, ix, D. Reidel Publishing Company, Dordrecht, the Netherlands, 1970.
Davis, R. N., Du, J., Smith, A. K., Ward, W. E., and Mitchell, N. J.: The diurnal and semidiurnal tides over Ascension Island (∘ S,
14∘ W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013.
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and
Niciejewski, R.: Short-term and interannual variations of migrating diurnal
and semidiurnal tides in the mesosphere and lower thermosphere, J. Geophys. Res.-Space Physics, 123, 7106–7123,
https://doi.org/10.1029/2018JA025748, 2018.
Forbes, J. M.: Tidal and planetary waves, Geoph. Monog. Series, 87, 67–87,
https://doi.org/10.1029/GM087p0067, 1995.
Forbes, J. M. and Vincent, R. A.: Effects of mean winds and dissipation on
the diurnal propagating tide: an analytic approach, Planet. Space
Sci., 37, 197–209, https://doi.org/10.1016/0032-0633(89)90007-X, 1989.
Gan, Q., Du, J., Ward, W. E., Beagley, S. R., Fomichev, V. I., and Zhang,
S.: Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its
comparisons with SABER, Earth Planets Space, 66, 103,
https://doi.org/10.1186/1880-5981-66-103, 2014.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.:
Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485,
2007.
GATS Inc.: SABER Level 2A data (version 2), GATS Inc. [data set], Newport News, VA, USA, http://saber.gats-inc.com, last access: 1 June 2022.
Gray, W. M.: Atlantic seasonal hurricane frequency: Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Wea.
Rev., 112, 1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984.
Gurubaran, S. and Rajaram, R.: Long-term variability in the mesospheric
tidal winds observed by MF radar over Tirunelveli (8.7∘ N,
77.8∘ E). Geophys. Res. Lett., 26, 1113–1116,
https://doi.org/10.1029/1999GL900171, 1999.
Gurubaran, S., Rajaram, R., Nakamura, T., and Tsuda, T.: Interannual
variability of diurnal tide in the tropical mesopause region: a signature of
the El Niño-Southern Oscillation (ENSO), Geophys. Res. Lett.,
32, L13805, https://doi.org/10.1029/2005gl022928, 2005.
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating diurnal tides in
the middle and upper atmosphere excited by tropospheric latent heat release,
J. Geophys. Res., 107, 4754, https://doi.org/10.1029/2001JD001236,
2002.
Hagan, M. E., Burrage, M. D., Forbes, J. M., Hackney, J., Randel, W. J., and
Zhang, X.: QBO effects on the diurnal tide in the upper atmosphere, Earth
Planet Space, 51, 571–578, https://doi.org/10.1186/BF03353216, 1999.
Hoerling, M. P., Kumar, A., and Zhong, M.: El Niño, La Niña, and the
nonlinearity of their teleconnections, J. Climate, 10, 1769–1786,
https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2, 1997.
Kissell, R. and Poserina, J.: Optimal Sports Math, Statistics, and Fantasy, Academic Press, 352 p.,
https://doi.org/10.1016/B978-0-12-805163-4.00002-5, 2017.
Kogure, M. and Liu, H.: DW1 tidal enhancements in the equatorial MLT during
2015 El Niño: The relative role of tidal heating and propagation,
J. Geophys. Res.-Space Physics, 126, e2021JA029342,
https://doi.org/10.1029/2021JA029342, 2021.
Kunz, A., Pan, L., Konopka, P., Kinnison, D., and Tilmes, S.: Chemical and
dynamical discontinuity at the extratropical tropopause based on START08 and
WACCM analyses, J. Geophys. Res., 116, D24302,
https://doi.org/10.1029/2011JD016686, 2011.
Li, T., She, C. Y., Liu, H., Yue, J., Nakamura, T., and Krueger, D. A.:
Observation of local tidal variability and instability, along with
dissipation of diurnal tidal harmonics in the mesopause region over Fort
Collins, Colorado (41∘ N, 105∘ W) (1984–2012), J. Geophys. Res.-Atmos., 114, D06106, https://doi.org/10.1029/2008jd011089, 2009.
Li, T., Calvo, N., Yue, J., Dou, X., Russell III, J. M., Mlynczak, M. G.,
She, C. Y., and Xue, X.: Influence of El Niño-Southern Oscillation in
the mesosphere, Geophys. Res. Lett., 40, 3292–3296,
https://doi.org/10.1002/grl.50598, 2013.
Li, T., Calvo, N., Yue, J., Russell III, J. M., Smith, A. K., Mlynczak, M.
G., Chandran, A., Dou, X., and Liu, A. Z.: Southern Hemisphere summer
mesopause responses to El Niño-Southern Oscillation, J. Climate, 29,
6319–6328, https://doi.org/10.1175/JCLI-D-15-0816.1, 2016.
Lieberman, R. S., Ortland, D. A., and Yarosh, E. S.: Climatology and
interannual variability of diurnal water vapor heating, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002jd002308, 2003.
Lieberman, R. S., Riggin, D. M., Ortland, D. A., Nesbitt, S. W., and
Vincent, R. A.: Variability of mesospheric diurnal tides and tropospheric
diurnal heating during 1997–1998, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2007jd008578, 2007.
Liu, A. Z., Lu, X., and Franke, S. J.: Diurnal variation of gravity wave
momentum flux and its forcing on the diurnal tide, J. Geophys. Res.-Atmos., 118, 1668–1678,
https://doi.org/10.1029/2012JD018653, 2013.
Liu, H., Sun, Y. Y., Miyoshi, Y., and Jin, H.: ENSO effects on MLT diurnal
tides: A 21 year reanalysis data-driven GAIA model simulation, J. Geophys. Res.-Space Phys., 122, 5539–5549,
https://doi.org/10.1002/2017JA024011, 2017.
Liu, H. L. and Hagan, M. E.: Local heating/cooling of the mesosphere due to
gravity wave and tidal coupling, Geophys. Res. Lett., 25,
2941–2944, https://doi.org/10.1029/98GL02153, 1998.
Liu, H. L., Wang, W., Richmond, A. D., and Roble, R. G.: Ionospheric
variability due to planetary waves and tides for solar minimum conditions,
J. Geophys. Res.-Space Phys., 115, A00G01,
https://doi.org/10.1029/2009JA015188, 2010.
Lu, X., Liu, A. Z., Swenson, G. R., Li, T., Leblanc, T., and McDermid, I.
S.: Gravity wave propagation and dissipation from the stratosphere to the
lower thermosphere, J. Geophys. Res.-Atmos., 114,
D11101, https://doi.org/10.1029/2008JD010112, 2009.
Lu, X., Liu, A. Z., Oberheide, J., Wu, Q., Li, T., Li, Z., Swenson, G. R., and Franke, S. J.: Seasonal variability of the diurnal tide in the mesosphere and lower
thermosphere over Maui, Hawaii (20.7∘ N, 156.3∘ W),
J. Geophys. Res., 116, D17103,
https://doi.org/10.1029/2011JD015599, 2011.
Lu, X., Liu, H. L., Liu, A. Z., Yue, J., McInerney, J. M., and Li, Z.:
Momentum budget of the migrating diurnal tide in the Whole Atmosphere
Community Climate Model at vernal equinox, J. Geophys. Res.,
117, D07112, https://doi.org/10.1029/2011JD017089, 2012.
Mayr, H. G. and Mengel, J. G.: Interannual variations of the diurnal tide in
the mesosphere generated by the quasi-biennial oscillation, J. Geophys. Res.,
110, D10111, https://doi.org/10.1029/2004JD005055, 2005.
McLandress, C.: Interannual variations of the diurnal tide in the mesosphere
induced by a zonal- mean wind oscillation in the tropics, Geophys. Res.
Lett., 29, 1305, https://doi.org/10.1029/2001GL014551, 2002a.
McLandress, C.: The seasonal variation of the propagating diurnal tide in
the mesosphere and lower thermosphere. Part II: The role of tidal heating
and zonal mean winds, J. Atmos. Sci., 59, 907–922,
https://doi.org/10.1175/1520-0469(2002)059<0907:Tsvotp>2.0.Co;2, 2002b.
McLandress, C., Shepherd, G. G., and Solheim, B. H.: Satellite observations
of thermospheric tides: Results from the wind imaging interferometer on
UARS, J. Geophys. Res.-Atmos., 101, 4093–4114,
https://doi.org/10.1029/95jd03359, 1996.
Mertens, C. J., Mlynczak, M. G., Lopez-Puertas, M., Wintersteiner, P. P.,
Picard, R. H., Winick, J. R., and Gordley, L. L.: Retrieval of mesospheric
and lower thermos pheric kinetic temperature form measurements of CO2 15 µm Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 28, 1391–1394, https://doi.org/10.1029/2000GL012189, 2001.
Mertens, C. J., Schmidlin, F. J., Goldberg, R. A., Remsberg, E. E., Pesnell,
W. D., Russell, J. M., Mlynczak, M. G., Lopez-Puertas, M., Wintersteiner, P.
P., Picard, R. H., Winick, J. R., and Gordley, L. L.: SABER observations of
mesospheric temperatures and comparisons with falling sphere measurements
taken during the 2002 summer MaCWAVE campaign, Geophys. Res. Lett.,
31, L03105, https://doi.org/10.1029/2003gl018605, 2004.
Pedatella, N. M. and Liu, H. L.: Tidal variability in the mesosphere and
lower thermosphere due to the El Niño-Southern Oscillation, Geophys. Res. Lett., 39, L19802, https://doi.org/10.1029/2012gl053383, 2012.
Pedatella, N. M. and Liu, H. L.: Influence of the El Niño Southern
Oscillation on the middle and upper atmosphere, J. Geophys. Res.-Atmos., 118, 2744–2755, https://doi.org/10.1002/Jgra.50286, 2013.
Ramesh, K., Smith, A. K., Garcia, R. R., Marsh, D. R., Sridharan, S., and
Kishore Kumar, K.: Long-term variability and tendencies in migrating diurnal
tide from WACCM6 simulations during 1850–2014, J. Geophys. Res.-Atmos., 125, e2020JD033644, https://doi.org/10.1029/2020JD033644, 2020.
Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., and
Gillett, N. P.: An update of observed stratospheric temperature
trends, J. Geophys. Res.-Atmos., 114, D02107,
https://doi.org/10.1029/2008JD010421, 2009.
Rezac, L., Jian, Y., Yue, J., Russell III, M. J., Kutepov, A., Garcia, R.,
Walker, K., and Bernath, P.: Validation of the global distribution of CO2
volume mixing ratio in the mesosphere and lower thermosphere from SABER, J.
Geophys. Res.-Atmos., 120, 12067–12081, https://doi.org/10.1002/2015JD023955, 2015.
Sassi, F., Kinnison, D., Boville, B., Garcia, R., and Roble, R.: Effect of
el niño–southern oscillation on the dynamical, thermal, and chemical
structure of the middle atmosphere, J. Geophys. Res., 109, D17108,
https://doi.org/10.1029/2003jd004434, 2004.
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Smith, A. K., Pedatella, N. M., Marsh, D. R., and Matsuo, T.: On the
Dynamical Control of the Mesosphere – Lower Thermosphere by the Lower and
Middle Atmosphere, J. Atmos. Sci., 74, 933–947,
https://doi.org/10.1175/JAS-D-16-0226.1, 2017.
Sridharan, S.: Seasonal variations of low-latitude migrating and
nonmigrating diurnal and semidiurnal tides in TIMED-SABER temperature and
their relationship with source variations, J. Geophys. Res.-Space Phys., 124, 3558–3572, https://doi.org/10.1029/2018JA026190, 2019.
Sridharan, S.: Equatorial upper mesospheric mean winds and tidal response to
strong El Niño and La Niña, J. Atmos. Sol.-Terr. Phy., 202, 105270, https://doi.org/10.1016/j.jastp.2020.105270, 2020.
Sridharan, S., Tsuda, T., and Gurubaran, S.: Long-term tendencies in the
mesosphere/lower thermosphere mean winds and tides as observed by
medium-frequency radar at Tirunelveli (8.7∘ N, 77.8∘ E), J. Geophys. Res.-Atmos., 115, D08109, https://doi.org/10.1029/2008JD011609, 2010.
Vincent, R. A., Kovalam, S., Fritts, D. C., and Isler, J. R.: Long-term MF
radar observations of solar tides in the low-latitude mesosphere:
Interannual variability and comparisons with GSWM, J. Geophys. Res., 103, 8667–8683, https://doi.org/10.1029/98JD00482, 1998.
Vitharana, A., Du, J., Zhu, X., Oberheide, J., and Ward, W. E.: Numerical
prediction of the migrating diurnal tide total variability in the mesosphere
and lower thermosphere, J. Geophys. Res.-Space Phys., 126,
e2021JA029588, https://doi.org/10.1029/2021JA029588, 2021.
Volland, H.: Atmospheric Tidal and Planetary Waves[M], Springer Netherlands,
https://doi.org/10.1007/978-94-009-2861-9, 1988.
Wallace, J. M., Panetta. R. L., and Estberg J.: Representation of the
equatorial quasi-biennial oscillation in EOF phase space, J. Atmos. Sci., 50, 1751–1762, https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2, 1993.
Walterscheid, R. L.: Inertia-gravity wave induced accelerations of mean flow
having an imposed periodic component: Implications for tidal observations in
the meteor region, J. Geophys. Res.-Atmos., 86,
9698–9706, https://doi.org/10.1029/JC086iC10p09698, 1981a.
Walterscheid, R. L.: Dynamical cooling induced by dissipating internal
gravity waves, Geophys. Res. Lett., 8, 1235–1238, https://doi.org/10.1029/GL008i012p01235, 1981b.
Xu, J., Smith, A. K., Liu, H.-L., Yuan, W., Wu, Q., Jiang, G., Mlynczak, G.
M., Russell III, J. M., and Franke, S. J.: Seasonal and quasi-biennial
variations in the migrating diurnal tide observed by Thermosphere,
Ionosphere, Mesosphere, Energetics and Dynamics (TIMED), J. Geophys. Res.,
114, D13107, https://doi.org/10.1029/2008JD011298, 2009.
Xu, J. Y., Liu, H. L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J.,
Russell, J. M., and Mlynczak, M. G.: Mesopause structure from thermosphere,
ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the
atmosphere using broadband emission radiometry (SABER) observations, J. Geophys. Res.-Atmos. 112, D09102, https://doi.org/10.1029/2006jd007711, 2007a.
Xu, J. Y., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and
Russell, J. M.: Global structure and long-term variations of zonal mean
temperature observed by TIMED/SABER, J. Geophys. Res.-Atmos., 112, D24106, https://doi.org/10.1029/2007jd008546, 2007b.
Yang, C., Smith, A. K., Li, T., and Dou, X.: The effect of the Madden-Julian
oscillation on the mesospheric migrating diurnal tide: A study using
SD-WACCM, Geophys. Res. Lett., 45, 5105–5114,
https://doi.org/10.1029/2018GL077956, 2018.
Yulaeva, E. and Wallace, J. M.: The signature of ENSO in global
temperature and precipitation fields derived from the microwave sounding
unit, J. Climate, 7, 1719–1736, https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2, 1994.
Zhang, X., Forbes, J. M., and Hagan, M. E.: Longitudinal variation of tides
in the MLT region: 1. Tides driven by tropospheric net radiative heating,
J. Geophys. Res.-Space Phys., 115, A06316,
https://doi.org/10.1029/2009JA014897, 2010.
Zhou, X., Wan, W., Yu, Y., Ning, B., Hu, L., and Yue, X.: New approach to
estimate tidal climatology from ground-and space-based observations, J. Geophys. Res.-Space Phys., 123, 5087–5101,
https://doi.org/10.1029/2017JA024967, 2018.
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and...
Altmetrics
Final-revised paper
Preprint