Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7667-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7667-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective
Zhaochen Liu
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Xianmei Lang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Louise C. Sime, Rachel Diamond, Christian Stepanek, Chris Brierley, David Schroeder, Masa Kageyama, Irene Malmierca-Vallet, Ed Blockley, Alex West, Danny Feltham, Jeff Ridley, Pascale Braconnot, Charles J. R. Williams, Xiaoxu Shi, Bette L. Otto-Bliesner, Sophia I. Macarewich, Silvana Ramos Buarque, Qiong Zhang, Allegra LeGrande, Weipeng Zheng, Dabang Jiang, Polina Morozova, Chuncheng Guo, Zhongshi Zhang, Nicholas Yeung, Laurie Menviel, Sandeep Narayanasetti, Olivia Reeves, Matthew Pollock, and Anni Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3531, https://doi.org/10.5194/egusphere-2025-3531, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Arctic may have lost its summer sea ice 127,000 years ago during a naturally warm period in Earth’s past. Climate models can be tested by recreating those conditions, with similar sunlight and greenhouse gas levels. Analysing the large sea ice changes in these simulations helps us understand how the Arctic might respond in the near future and improves how we test and trust our climate models.
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023, https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Short summary
The sensitivity of climate to the height changes of the East Antarctic ice sheet (EAIS) during the mid-Pliocene has been assessed using the HadCM3 model. The results show that the height reduction of the EAIS leads to a warmer and wetter East Antarctica. However, unintuitively, both the surface air temperature and the sea surface temperature decrease over the rest of the globe. These findings could provide insights into future changes caused by warming-induced decay of the Antarctic ice sheet.
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022, https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
Cited articles
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011.
Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes
on the global hydrological cycle, Proc. Natl. Acad. Sci. USA, 105,
7664–7669, https://doi.org/10.1073/pnas.0711648105, 2008.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.:
Aerosol forcing in the Climate Model Intercomparison Project (CMIP5)
simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys.
Res., 116, D20206, https://doi.org/10.1029/2011JD016074, 2011.
Bluth, G. J., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter,
L. S.: Global tracking of the SO2 clouds from the June, 1991 Mount
Pinatubo eruptions, Geophy. Res. Lett., 19, 151–154,
https://doi.org/10.1029/91GL02792, 1992.
Budyko, M. I.: Climatic Changes, American Geophysical Union, Washington, DC,
244 pp., https://doi.org/10.1029/SP010, 1977.
Caldeira, K., Bala, G., and Cao, L.: The science of geoengineering. Annu.
Rev. Earth Planet. Sci., 41, 231–256,
https://doi.org/10.1146/annurev-earth-042711-105548, 2013.
Cao, L., Gao, C. C., and Zhao, L. Y.: Geoengineering: Basic science and
ongoing research efforts in China, Adv. Clim. Chang. Res., 6, 188–196,
https://doi.org/10.1016/j.accre.2015.11.002, 2015.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: A
contribution to resolve a policy dilemma? Clim. Change, 77, 211–220,
https://doi.org/10.1007/s10584-006-9101-y, 2006.
Donohoe, A. and Battisti, D. S.: Atmospheric and surface contributions to
planetary albedo, J. Clim., 24, 4402–4418,
https://doi.org/10.1175/2011JCLI3946.1, 2011.
Duan, L., Cao, L., Bala, G., and Caldeira, K.: Climate response to pulse
versus sustained stratospheric aerosol forcing, Geophys. Res. Lett., 46,
8976–8984, https://doi.org/10.1029/2019GL083701, 2019.
Gong, T., Feldstein, S., and Lee, S.: The role of downward infrared
radiation in the recent Arctic winter warming trend, J. Clim., 30,
4937–4949, https://doi.org/10.1175/JCLI-D-16-0180.1, 2017.
Irvine, P. J., Kravitz, B., Lawrence, M. G., and Muri, H.: An overview of
the Earth system science of solar geoengineering, Wiley Interdiscip.
Rev.-Clim. Chang., 7, 815–833, https://doi.org/10.1002/wcc.423, 2016.
Irvine, P. J., Emanuel, K., He, J., Horowitz, L. W., Vecchi, G., and Keith,
D.: Halving warming with idealized solar geoengineering moderates key
climate hazards, Nat. Clim. Change, 9, 295–299, 2019.
Jarvis, A.: The magnitudes and timescales of global mean surface temperature feedbacks in climate models, Earth Syst. Dynam., 2, 213–221, https://doi.org/10.5194/esd-2-213-2011, 2011.
Ji, D., Wang, L., Feng, J., Wu, Q., Cheng, H., Zhang, Q., Yang, J., Dong, W., Dai, Y., Gong, D., Zhang, R.-H., Wang, X., Liu, J., Moore, J. C., Chen, D., and Zhou, M.: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1, Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, 2014.
Ji, D., Fang, S., Curry, C. L., Kashimura, H., Watanabe, S., Cole, J. N. S., Lenton, A., Muri, H., Kravitz, B., and Moore, J. C.: Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering, Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, 2018.
Jiang, D., Tian, Z., and Lang, X.: Reliability of climate models for China
through the IPCC third to fifth assessment reports, Int. J. Climatol., 36,
1114–1133, https://doi.org/10.1002/joc.4406, 2016.
Jiang, D., Hu, D., Tian, Z., and Lang, X.: Differences between CMIP6 and
CMIP5 models in simulating climate over China and the East Asian monsoon,
Adv. Atmos. Sci., 37, 1102–1118, https://doi.org/10.1007/s00376-020-2034-y,
2020.
Jones, A., Haywood, J. M., Alterskjær, K., Boucher, O., Cole, J. N.,
Curry, S., Charles, L., Irvine, P. J., Ji, D., Kravitz, B.,
Egill-Kristjánsson, J., Moore, J. C., Niemeier, U., Robock, A., Schmidt,
H., Singh, B., Tilmes, S., Watanabe, S., and Yoon, J.-H.: The impact of
abrupt suspension of solar radiation management (termination effect) in
experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP),
J. Geophys. Res.-Atmos., 118, 9743–9752,
https://doi.org/10.1002/jgrd.50762, 2013.
Jones, A. C., Hawcroft, M. K., Haywood, J. M., Jones, A., Guo, X., and
Moore, J. C.: Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering, Earths Future, 6, 230–251,
https://doi.org/10.1002/2017EF000720, 2018.
Kashimura, H., Abe, M., Watanabe, S., Sekiya, T., Ji, D., Moore, J. C., Cole, J. N. S., and Kravitz, B.: Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, 2017.
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E.,
Stenchikov, G., and Schulz, M.: The Geoengineering Model Intercomparison
Project (GeoMIP), Atmos. Sci. Lett., 12, 162–167,
https://doi.org/10.1002/asl.316, 2011.
Kravitz, B., Robock, A., Forster, P. M., Haywood, J. M., Lawrence, M. G.,
and Schmidt, H.: An overview of the Geoengineering Model Intercomparison
Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 13103–13107,
https://doi.org/10.1002/2013JD020569, 2013a.
Kravitz, B., Rasch, P. J., Forster, P. M., Andrews, T., Cole, J. N., Irvine,
P. J., Ji, D., Kristjánsson, J., Moore, J. C., Muri, H., Niemeier, U.,
Robock, A., Singh, B., Tilmes, S., Watanabe, S., and Yoon, J.-H.: An
energetic perspective on hydrological cycle changes in the Geoengineering
Model Intercomparison Project, J. Geophys. Res.-Atmos., 118, 13087–13102,
https://doi.org/10.1002/2013JD020502, 2013b.
Kravitz, B., MacMartin, D. G., Robock, A., Rasch, P. J., Ricke, K. L., Cole,
J. N., Curry, C. L., Irvine, P. J., Ji, D., Keith, D. W., Kristjánsson,
J. E., Moore, J. C., Muri, H., Singh, B., Tilmes, S., Watanabe, S., Yang,
S., and Yoon, J. H.: A multi-model assessment of regional climate
disparities caused by solar geoengineering, Environ. Res. Lett., 9, 074013,
https://doi.org/10.1088/1748-9326/9/7/074013, 2014.
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P. J., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., and Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results, Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015.
Kravitz, B., MacMartin, D. G., Wang, H., and Rasch, P. J.: Geoengineering as a design problem, Earth Syst. Dynam., 7, 469–497, https://doi.org/10.5194/esd-7-469-2016, 2016.
Kravitz, B., MacMartin, D. G., Tilmes, S., Richter, J. H., Mills, M. J.,
Cheng, W., Dagon, K., Glanville, A. S., Lamarque, J.-F., Simpson, I. R.,
Tribbia, J., and Vitt, F.: Comparing surface and stratospheric impacts of
geoengineering with different SO2 injection strategies, J. Geophys.
Res.-Atmos., 124, 7900–7918, https://doi.org/10.1029/2019JD030329, 2019.
Latham, J.: Control of global warming?, Nature, 347, 339–340,
https://doi.org/10.1038/347339b0, 1990.
Li, Y., Wang, T., Zeng, Z., Peng, S., Lian, X., and Piao, S.: Evaluating
biases in simulated land surface albedo from CMIP5 global climate models, J.
Geophys. Res.-Atmos., 121, 6178–6190, https://doi.org/10.1002/2016JD024774,
2016.
Lu, J. and Cai, M.: Seasonality of polar surface warming amplification in
climate simulations, Geophys. Res. Lett., 36, L16704,
https://doi.org/10.1029/2009GL040133, 2009.
Matthews, H. D. and Caldeira, K.: Transient climate – carbon simulations of
planetary geoengineering, Proc. Natl. Acad. Sci. USA., 104, 9949–9954,
https://doi.org/10.1073/pnas.0700419104, 2007.
Mitchell, D. L. and Finnegan, W.: Modification of cirrus clouds to reduce
global warming, Environ. Res. Lett., 4, 045102,
https://doi.org/10.1088/1748-9326/4/4/045102, 2009.
Qu, X. and Hall, A.: What controls the strength of snow-albedo feedback?, J.
Clim., 20, 3971–3981, https://doi.org/10.1175/JCLI4186.1, 2007.
Raible, C. C., Brönnimann, S., Auchmann, R., Brohan, P., Frölicher,
T. L., Graf, H. F., Jones, P., Luterbacher, J., Muthers, S., Neukom, R.,
Robock, A., Self, S., Sudrajat, A., Timmreck, C., and Wegmann, M.: Tambora
1815 as a test case for high impact volcanic eruptions: Earth system
effects, Wiley Interdiscip. Rev.-Clim. Chang., 7, 569–589,
https://doi.org/10.1002/wcc.407, 2016.
Rasch, P. J., Crutzen, P. J., and Coleman, D. B.: Exploring the
geoengineering of climate using stratospheric sulfate aerosols: The role of
particle size, Geophys. Res. Lett., 35, L02809,
https://doi.org/10.1029/2007GL032179, 2008.
Ricke, K. L., Moreno-Cruz, J. B., and Caldeira, K.: Strategic incentives for
climate geoengineering coalitions to exclude broad participation, Environ.
Res. Lett., 8, 014021, https://doi.org/10.1088/1748-9326/8/1/014021, 2013.
Robiou du Pont, Y. and Meinshausen, M.: Warming assessment of the bottom-up
Paris Agreement emissions pledges, Nat. Commun., 9, 4810,
https://doi.org/10.1038/s41467-018-07223-9, 2018.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to
geoengineering with tropical and Arctic SO2 injections, J. Geophys.
Res., 113, D16, https://doi.org/10.1029/2008JD010050, 2008.
Robock, A.: Stratospheric aerosol geoengineering, in: AIP Conference Proceedings, Berkeley, CA, USA, 8–9 March 2014, 1652,
183–197, https://doi.org/10.1063/1.4916181, 2015.
Sato, M.: Forcings in GISS climate model: Stratospheric aerosol optical
thickness, https://data.giss.nasa.gov/modelforce/strataer/ (last access: April 2021),
2006.
Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J. E., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F., Lawrence, M., and Timmreck, C.: Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models, Earth Syst. Dynam., 3, 63–78, https://doi.org/10.5194/esd-3-63-2012, 2012.
Séférian, R., Delire, C., Decharme, B., Voldoire, A., Salas y Melia, D., Chevallier, M., Saint-Martin, D., Aumont, O., Calvet, J.-C., Carrer, D., Douville, H., Franchistéguy, L., Joetzjer, E., and Sénési, S.: Development and evaluation of CNRM Earth system model – CNRM-ESM1, Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, 2016.
Seifritz, W.: Mirrors to halt global warming, Nature, 340, 603,
https://doi.org/10.1038/340603a0, 1989.
Sudo, K., Takahashi, M., Kurokawa, J., and Akimoto, H.: CHASER: A global
chemical model of the troposphere: 1. Model description, J. Geophys. Res.,
107, 4339, https://doi.org/10.1029/2001JD001113, 2002.
Sun, W., Wang, B., Chen, D., Gao, C., Lu, G., and Liu, J.: Global monsoon
response to tropical and Arctic stratospheric aerosol injection, Clim. Dyn.,
55, 2107–2121, https://doi.org/10.1007/s00382-020-05371-7, 2020.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tilmes, S., Müller, R., and Salawitch, R.: The sensitivity of polar
ozone depletion to proposed geoengineering schemes, Science, 320,
1201–1204, https://doi.org/10.1126/science.1153966, 2008.
Tilmes, S., Fasullo, J., Lamarque, J. F., Marsh, D. R., Mills, M.,
Alterskjær, K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz,
M., Cole, J. N. S., Curry, C. L., Jones, A., Haywood, J., Irvine, P. J., Ji,
D., Moore, J. C., Karam, D. B., Kravitz, B., Rasch, P. J., Singh, B., Yoon,
J.-H., Niemeier, U., Schmidt, H., Robock, A., Yang, S., and Watanabe, S.:
The hydrological impact of geoengineering in the Geoengineering Model
Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118,
11036–11058, https://doi.org/10.1002/jgrd.50868, 2013.
Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J.,
Simpson, I. R., Glanville, A. S., Fasullo, J. T., Phillips, A. S., Lamarque,
J.-F., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: CESM1 (WACCM)
stratospheric aerosol geoengineering large ensemble project, B. Am.
Meteorol. Soc., 99, 2361–2371, https://doi.org/10.1175/BAMS-D-17-0267.1,
2018.
Tilmes, S., Visioni, D., Jones, A., Haywood, J., Séférian, R., Nabat, P., Boucher, O., Bednarz, E. M., and Niemeier, U.: Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, 2022.
Trenberth, K. E. and Dai, A.: Effects of Mount Pinatubo volcanic eruption
on the hydrological cycle as an analog of geoengineering, Geophys. Res.
Lett., 34, 1438–1442, https://doi.org/10.1029/2007GL030524, 2007.
United Nations Environment Programme: Emissions Gap Report 2020, UNEP,
Nairobi, https://www.unep.org/emissions-gap-report-2020 (last access: 25 May 2022), 2020.
Visioni, D., Pitari, G., di Genova, G., Tilmes, S., and Cionni, I.: Upper tropospheric ice sensitivity to sulfate geoengineering, Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, 2018.
Visioni, D., MacMartin, D. G., and Kravitz, B.: Is turning down the sun a
good proxy for stratospheric sulfate geoengineering?, J. Geophys.
Res.-Atmos., 126, e2020JD033952, https://doi.org/10.1029/2020JD033952, 2021.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
WCRP: CMIP5 project data, World Climate Research Programme [data set], https://esgf-node.llnl.gov/search/cmip5/, last access: 25 May 2022.
Wigley, T. M. L.: A combined mitigation/geoengineering approach to climate
stabilization, Science, 314, 452–454,
https://doi.org/10.1126/science.1131728, 2006.
Wu, J. and Gao, X.: A gridded daily observation dataset over China region
and comparison with the other datasets, Chinese J. Geophy., 56, 1102–1111,
http://geophy.cn/article/doi/10.6038/cjg20130406 (last access: 25 May 2022), 2013 (in Chinese).
Short summary
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract global warming. Here the impact of stratospheric aerosol intervention geoengineering on surface air temperature over China and related physical processes are investigated. Results show that the increased stratospheric aerosols cause surface cooling over China. The temperature responses vary with models, regions, and seasons and are largely related to net surface shortwave radiation changes.
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract...
Altmetrics
Final-revised paper
Preprint