Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations
Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Johannes Quaas
Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Edward Gryspeerdt
Space and Atmospheric Physics Group, Imperial College London, London, UK
Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK
Christoph Böhm
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Odran Sourdeval
Laboratoire d'Optique Atmosphérique, Université de Lille, CNRS, Lille, France
Viewed
Total article views: 4,118 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Jan 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,067 | 981 | 70 | 4,118 | 144 | 42 | 49 |
- HTML: 3,067
- PDF: 981
- XML: 70
- Total: 4,118
- Supplement: 144
- BibTeX: 42
- EndNote: 49
Total article views: 2,985 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Jun 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,464 | 482 | 39 | 2,985 | 65 | 31 | 39 |
- HTML: 2,464
- PDF: 482
- XML: 39
- Total: 2,985
- Supplement: 65
- BibTeX: 31
- EndNote: 39
Total article views: 1,133 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Jan 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
603 | 499 | 31 | 1,133 | 79 | 11 | 10 |
- HTML: 603
- PDF: 499
- XML: 31
- Total: 1,133
- Supplement: 79
- BibTeX: 11
- EndNote: 10
Viewed (geographical distribution)
Total article views: 4,118 (including HTML, PDF, and XML)
Thereof 4,206 with geography defined
and -88 with unknown origin.
Total article views: 2,985 (including HTML, PDF, and XML)
Thereof 3,020 with geography defined
and -35 with unknown origin.
Total article views: 1,133 (including HTML, PDF, and XML)
Thereof 1,186 with geography defined
and -53 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
13 citations as recorded by crossref.
- Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models M. Gao et al. 10.5194/amt-16-5863-2023
- Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions E. Gryspeerdt et al. 10.5194/acp-23-4115-2023
- Sensitivity of cloud microphysics to aerosol is highly associated with cloud water content: Implications for indirect radiative forcing Y. Wang et al. 10.1016/j.atmosres.2024.107552
- Changes in biodiversity impact atmospheric chemistry and climate through plant volatiles and particles A. Sanaei et al. 10.1038/s43247-023-01113-9
- Cloud condensation nuclei concentrations derived from the CAMS reanalysis K. Block et al. 10.5194/essd-16-443-2024
- Nonlinearity of the cloud response postpones climate penalty of mitigating air pollution in polluted regions H. Jia & J. Quaas 10.1038/s41558-023-01775-5
- A nonlinear cloud response delays the warming effect of aerosol reductions 10.1038/s41558-023-01783-5
- A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations F. Alexandri et al. 10.5194/amt-17-1739-2024
- Frontiers in Satellite‐Based Estimates of Cloud‐Mediated Aerosol Forcing D. Rosenfeld et al. 10.1029/2022RG000799
- Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China Y. Liu et al. 10.5194/acp-24-4651-2024
- Robust evidence for reversal of the trend in aerosol effective climate forcing J. Quaas et al. 10.5194/acp-22-12221-2022
- Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations H. Bian et al. 10.5194/acp-24-1717-2024
- Machine-Learning Based Analysis of Liquid Water Path Adjustments to Aerosol Perturbations in Marine Boundary Layer Clouds Using Satellite Observations L. Zipfel et al. 10.3390/atmos13040586
12 citations as recorded by crossref.
- Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models M. Gao et al. 10.5194/amt-16-5863-2023
- Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions E. Gryspeerdt et al. 10.5194/acp-23-4115-2023
- Sensitivity of cloud microphysics to aerosol is highly associated with cloud water content: Implications for indirect radiative forcing Y. Wang et al. 10.1016/j.atmosres.2024.107552
- Changes in biodiversity impact atmospheric chemistry and climate through plant volatiles and particles A. Sanaei et al. 10.1038/s43247-023-01113-9
- Cloud condensation nuclei concentrations derived from the CAMS reanalysis K. Block et al. 10.5194/essd-16-443-2024
- Nonlinearity of the cloud response postpones climate penalty of mitigating air pollution in polluted regions H. Jia & J. Quaas 10.1038/s41558-023-01775-5
- A nonlinear cloud response delays the warming effect of aerosol reductions 10.1038/s41558-023-01783-5
- A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations F. Alexandri et al. 10.5194/amt-17-1739-2024
- Frontiers in Satellite‐Based Estimates of Cloud‐Mediated Aerosol Forcing D. Rosenfeld et al. 10.1029/2022RG000799
- Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China Y. Liu et al. 10.5194/acp-24-4651-2024
- Robust evidence for reversal of the trend in aerosol effective climate forcing J. Quaas et al. 10.5194/acp-22-12221-2022
- Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations H. Bian et al. 10.5194/acp-24-1717-2024
Latest update: 14 Nov 2024
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the...
Altmetrics
Final-revised paper
Preprint