Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2385-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the impact of Saharan dust aerosols on analyses and forecasts of African easterly waves by constraining aerosol effects in radiance data assimilation
Dustin Francis Phillip Grogan
CORRESPONDING AUTHOR
Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
Cheng-Hsuan Lu
Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
Joint Center for Satellite Data Assimilation, Boulder, CO, USA
Shih-Wei Wei
Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
Joint Center for Satellite Data Assimilation, Boulder, CO, USA
Sheng-Po Chen
Department of Chemistry, National Central University, Taoyuan, Taiwan
Related authors
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024, https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
Short summary
This study describes the modeling system and the evaluation results for the first prototype version of a global aerosol reanalysis product at NOAA, prototype NOAA Aerosol ReAnalysis version 1.0 (pNARA v1.0). We evaluated pNARA v1.0 against independent datasets and compared it with other reanalyses. We identified deficiencies in the system (both in the forecast model and in the data assimilation system) and the uncertainties that exist in our reanalysis.
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Cited articles
Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, 2018.
Bercos-Hickey, E., Nathan, T. R., and Chen, S.-H.:
Saharan dust and the African easterly jet-African easterly wave system: structure, location and energetics,
Q. J. Roy. Meteor. Soc.,
143, 2797–2808, https://doi.org/10.1002/qj.3128, 2017.
Bercos-Hickey, E., Nathan, T. R., and Chen, S.-H.:
On the Relationship between the African Easterly Jet, Saharan Mineral Dust Aerosols, and West African Precipitation,
J. Climate,
143, 3533–3546, https://doi.org/10.1175/JCLI-D-18-0661.1, 2020.
Berry G. J. and Thorncroft C. D.:
Case study of an intense African easterly wave,
Mon. Weather Rev.,
123, 752–766, https://doi.org/10.1175/MWR2884.1, 2005.
Bozzo, A., Remy, S., Benedetti, A., Fleming, J., Betchold, P., Rodwell, M. J., and Morcrette, J.-J.:
Implementation of a CAMS-based aerosol climatology in the IFS, ECMWF Technical Memorandum, 801, ECMWF,
https://www.ecmwf.int/en/elibrary/17771-radiation-numerical-weather-prediction (last access: 17 February 2022), 2017.
Brammer, A. and Thorncroft, C. D.:
Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic,
Mon. Weather Rev.,
143, 4975–4995, https://doi.org/10.1175/MWR-D-15-0106.1, 2015.
Brammar A. and Thorncroft, C. D.:
Spatial and temporal variability of the three-dimensional flow around African easterly waves,
Mon. Weather Rev.,
145, 2879–2897, https://doi.org/10.1175/MWR-D-16-0454.1, 2017.
Burpee, R. W.:
The origin and structure of easterly waves in the lower troposphere of North Africa,
J. Atmos. Sci.,
29, 77–90, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2, 1972.
Burpee, R. W.:
Characteristics of North African Easterly Waves During the Summers of 1968 and 1969,
J. Atmos. Sci.,
31, 1556–1570, https://doi.org/10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2, 1974.
Carlson, T. N.:
Some Remarks on African Disturbances and their Progress over the Tropical Atlantic,
Mon. Weather Rev.,
97, 716–726, https://doi.org/10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2, 1969.
Chen, S.-H., Wang, S.-H., and Waylonis, M.: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects, J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158, 2010.
Chen, S.-H., Liu, Y.-C., Nathan, T. R., Davis, C., Torn, R., Sowa N., Cheng, C.-T., and Chen, J.-P.:
Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006),
Q. J. Roy. Meteor. Soc.,
141, 2463–2570, https://doi.org/10.1002/qj.2542, 2015.
Colarco, P., da Silva A., Chin M., and Diehl T.:
Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth,
J. Geophys. Res.,
115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Cowie, S. M., Knippertz, P., and Marsham, J. H.: A climatology of dust emission events from northern Africa using long-term surface observations, Atmos. Chem. Phys., 14, 8579–8597, https://doi.org/10.5194/acp-14-8579-2014, 2014.
Cuesta, J., Marsham J. H., Parker D. H., and Flamant C.:
Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer,
Atmos. Sci. Lett.,
10, 34–42, https://doi.org/10.1002/asl.207, 2009.
Engelstaedter, S. and Washington R.:
Atmospheric controls on the annual cycle of North African dust,
J. Geophys. Res.-Atmos.,
112, D03103, https://doi.org/10.1029/2006JD007195, 2007.
Grogan, D. F. P. and Nathan, T. R.:
Passive versus active transport of Saharan dust aerosol by African easterly waves,
Geosciences,
12, 1509, https://doi.org/10.3390/atmos12111509, 2021.
Grogan, D. F. P. and Thorncroft, C. D.:
The characteristics of African easterly waves coupled to Saharan mineral dust aerosols,
Q. J. Roy. Meteor. Soc., 145, 1–17, https://doi.org/10.1002/qj.3483, 2019.
Grogan, D. F. P., Nathan, T. R., and Chen, S.-H.:
Effect of Saharan dust on the linear dynamics of African easterly waves,
J. Atmos. Sci.,
73, 891–911, https://doi.org/10.1175/JAS-D-15-0143.1, 2016.
Grogan, D. F. P., Nathan, T. R., and Chen, S.-H.:
Saharan dust and the nonlinear evolution of the African easterly jet-African easterly wave system,
J. Atmos. Sci.,
74, 24–47, https://doi.org/10.1175/JAS-D-16-0118.1, 2017.
Grogan, D. F. P., Nathan, T. R., and Chen, S.-H.:
Structural Changes in the African Easterly Jet and Its Role in Mediating the Effects of Saharan Dust on the Linear Dynamics of African Easterly Waves,
J. Atmos. Sci.,
76, 3359–3365, https://doi.org/10.1175/JAS-D-19-0104.1, 2019.
Han, Y., van Deist, P., Liu, Q., Weng, F., Yan, B., Treason, R., and Derber, J.:
JCSDA community radiative transfer model (CRTM): Version 1, NOAA Technical Report NESDIS 122, NOAA, National Environmental Satellite, Data,
and Information Service,
https://repository.library.noaa.gov/view/noaa/1157/noaa_1157_DS1.pdf (last access: 17 February 2022), 2006.
Hess, M. P., Koepke, P., and Shult, I.:
Optical properties of aerosol and clouds: The software package OPAC,
B. Am. Meteorol. Soc.,
79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.
Hou, Y.-T., Moorhi, S., and Campana, K.:
Parameterization of solar radiation transfer in the NCEP models,
NCEP Office Note 441, NOAA,
https://repository.library.noaa.gov/view/noaa/23085/noaa_23085_DS1.pdf (last access: 17 February 2022), 2002.
Hsieh, J.-S. and Cook, K. H.:
Generation of African easterly wave disturbances: relationship to the African easterly jet,
Mon. Weather Rev.,
133, 1311–1327, https://doi.org/10.1175/MWR2916.1, 2005.
Jones, C., Mahowald, N., and Luo, C.:
The role of easterly waves on African desert dust transport,
J. Climate,
16, 3617–3628, https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2, 2003.
Jones, C., Mahowald, N., and Luo, C.:
Observational evidence of African desert dust intensification of easterly waves,
Geophys. Res. Lett.,
31, L17208, https://doi.org/10.1029/2004GL020107, 2004.
Jury, M. R. and Santiago, M. J.:
Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era,
J. Geophys. Res.,
115, D16213, https://doi.org/10.1029/2009JD013612, 2010.
Karyampudi, V. M., Palm, S. P., Reagen, J. A., Fang, H., Grand, W. B., Hoff, R. M., Moulin, C., Pierce, H. F., Torres, O., Browell, E. V., and Melfi, S. H.:
Validation of the Saharan Dust Plume Conceptual Model Using Lidar, Meteosat, and ECMWF Data,
B. Am. Meteorol. Soc.,
80, 1045–1076, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2, 1999.
Kiladis, G. N., Thorncroft, C. D., and Hall, N. M. J.:
Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: observations,
J. Atmos. Sci.,
63, 2212–2230, https://doi.org/10.1175/JAS3741.1, 2006.
Kim, J., Akella, S., da Silva, A. M., Todling, R., and McCarty, W.:
Preliminary evaluation of influence of aerosols on the simulation of brightness temperature in NASA's Goddard Earth Observing System Atmospheric Data Assimilation System,
Technical Report Series on Global Modeling and Data Assimilation, NASA, 49,
https://ntrs.nasa.gov/api/citations/20180001946/downloads/20180001946.pdf (last access: 17 February 2022), 2018.
Knippertz, P. and Todd, M. C.:
The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances,
Geophys. Res. Lett.,
115, D12117, https://doi.org/10.1029/2009JD012819, 2010.
Knippertz, P. and Todd, M.:
Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling,
Rev. Geophys.,
50, RG1007, https://doi.org/10.1029/2011RG000362, 2012.
Lorenc, A. C. and Rawlins, F.:
Why Does 4D-Var Beat 3D-Var?,
Q. J. Roy. Meteor. Soc.,
131, 3247–3257, https://doi.org/10.1256/qj.05.85, 2005.
Lu, C.-H., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y., Bhattacharjee, P. S., Chen, S.-P., Chuang, H.-Y., Juang, H.-M. H., McQueen, J., and Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, 2016.
Lu, C.-H., Liu, Q., Wei, S.-W., Johnson, B. T., Dang, C., Stegmann, P. G., Grogan, D., Ge, G., and Hu, M.: The Aerosol Module in the Community Radiative Transfer Model (v2.2 and v2.3): accounting for aerosol transmittance effects on the radiance observation operator, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-145, in review, 2021.
Mulcahy, J. P., Walters, D. N., Bellouin, N., and Milton, S. F.: Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model, Atmos. Chem. Phys., 14, 4749–4778, https://doi.org/10.5194/acp-14-4749-2014, 2014.
Nathan, T. R., Grogan, D. F. P., and Chen, S.-H.:
Subcritical destabilization of African easterly waves by Saharan mineral dust,
J. Atmos. Sci.,
74, 1039–1055, https://doi.org/10.1175/JAS-D-16-0247.1, 2017.
Nathan, T. R., Grogan, D. F. P. and Chen. S.-H.:
Saharan dust transport during the incipient growth phase of African easterly waves,
Geosciences,
9, 388, https://doi.org/10.3390/geosciences9090388, 2019.
Norquist, D. C., Recker, E. R., and Reed, R. J.:
The Energetics of African Wave Disturbances as observed During Phase III of GATE,
Mon. Weather Rev.,
105, 334–342, https://doi.org/10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2, 1977.
Paradis, D., Lafore, J.-P., Redelsperger, J.-L., and Balaji, V.:
African easterly waves and convection. Part I: linear simulations,
J. Atmos. Sci.,
52, 1657–1679, https://doi.org/10.1175/1520-0469(1995)052<1657:AEWACP>2.0.CO;2, 1995.
Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., and Özsoy, E.:
Interactive dust-radiation modeling: A step to improve weather forecasts,
J. Geophys. Res. Lett.,
111, D16206, https://doi.org/10.1029/2005JD006717, 2006.
Pytharoulis, I. and Thorncroft, C. D.:
The low-level structure of African easterly waves in 1995,
Mon. Weather Rev.,
127, 2266–2280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2, 1999.
Randles, C. A., da Silva, A. M., Buchard, V., Darmenov, A., Colarco, P. R., Aquila, V., Bian, H., Nowottnick, E. P., Pan, X., Smirnov, A., Yu, H., and Govindaraju, R.:
The MERRA-2 Aerosol Assimilation,
NASA TM-2016-104606, Vol. 45,
https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf (last access: 17 February 2022),
NASA Global Modeling and Assimilation Office, 132 pp, 2016.
Reale, O. and Lau, K. M.:
Impact of an interactive aerosol on the African easterly jet in the NASA GOES-5 global forecasing system,
Weather Forecast.,
26, 504–519, https://doi.org/10.1175/WAF-D-10-05025.1, 2011.
Reale, O., Lau, K. M., Kim, K.-Y., and Brin, E.:
Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System,
J. Atmos. Sci.,
66, 3563–3578, https://doi.org/10.1175/2009JAS3123.1, 2009.
Reale, O., Lau, K. M., da Silva, A. M., and Matsui, T.:
Impact of assimilated and interactive aerosol on tropical cyclogenesis,
Geophys. Res. Lett.,
41, 3282–3288, https://doi.org/10.1002/2014GL059918, 2014.
Reed, R. J., Klinker, E., and Hollingsworth, A.:
The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system,
Meteorol. Atmos. Phys.,
38, 22–33, https://doi.org/10.1007/BF01029944, 1988.
Ross, R. S. and Krishnamurti, T. N.:
Low-level African easterly wave activity and its relation to Atlantic tropical cyclogenesis in 2001,
Mon. Weather Rev.,
135, 3950–3964, https://doi.org/10.1175/2007MWR1996.1, 2007.
Schwendike, J. and Jones, S. C.:
Convection in an African Easterly Wave over West Africa and the eastern Atlantic: A model case study of Helene (2006),
Q. J. Roy. Meteor. Soc.,
135, 364–396, https://doi.org/10.1002/qj.566, 2010.
Sokolik, I.:
The spectral radiative signature of wind-blown mineral dust: Implications for remote sensing in the thermal IR region,
Geophys. Res. Lett.,
29, 2154, https://doi.org/10.1029/2002GL015910, 2002.
Tegen, I. and Fung I.:
Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness,
J. Geophys. Res.,
99, 22897–22914, https://doi.org/10.1029/94JD01928, 1994.
Thorncroft, C. D.:
An idealized study of African easterly waves. III: More realistic basic states,
Q. J. Roy. Meteor. Soc.,
121, 1589–1614, https://doi.org/10.1002/qj.49712152706, 1995.
Thorncroft, C. D. and Hoskins, B. J.:
An idealized study of African easterly waves. I: Linear theory,
Q. J. Roy. Meteor. Soc.,
120, 953–982, https://doi.org/10.1002/qj.49712051809, 1994.
Wagner, R., Schepanski, K., Heiinold, B., and Tegen, I.:
Interannual variability in the Saharan dust source activation—toward understanding the differences between 2007 and 2008,
J. Geophys. Res.-Atmos.,
121, 4538–4562, https://doi.org/10.1002/2015JD024302, 2017.
Wang, J., Bhattacharjee, P. S., Tallapragada, V., Lu, C.-H., Kondragunta, S., da Silva, A., Zhang, X., Chen, S.-P., Wei, S.-W., Darmenov, A. S., McQueen, J., Lee, P., Koner, P., and Harris, A.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 1: Model descriptions, Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, 2018.
Weaver, C. J., Joiner, J., and Ginoux, P.:
Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals,
J. Geophys. Res.,
108, 4246, https://doi.org/10.1029/2002JD002571, 2003.
Webb, N. P. and Strong, C. L.:
Soil erodibility dynamics and its representation for wind erosion and dust emission models,
Aeolian Res.,
3, 165–179, https://doi.org/10.1016/j.aeolia.2011.03.002, 2011.
Wei, S.-W., Collard, A., Grumbine, R., Liu, Q., and Lu, C.-H.:
Impacts of aerosols on meteorological assimilation: Aerosol impact on simulated brightness temperature and analysis fields,
JCSDA Quarterly,
66, Spring 2020, https://doi.org/10.25923/4pt1-wx36, 2020.
Wei, S.-W., Lu, C.-H., Liu, Q., Collard, A., Zhu, T., Grogan, D. F. P., Li, X., Wang, J., Grumbine R., and Bhattacharjee, P.:
The impact of aerosols on satellite radiance data assimilation using NCEP global data assimilation system,
Atmosphere,
12, 432, https://doi.org/10.3390/atmos12040432, 2021.
Westphal, D. L., Toon O. B., and Carlson, T. N.:
A case study of mobilization and transport of Saharan dust,
J. Atmos. Sci.,
45, 2145–2175, https://doi.org/10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2, 1988.
Wilcox, E. M., Lau, K. M., and Kim, K. Y.:
A northward shift of the North Atlantic Ocean Intertropical Convergence Zone in response to summertime Saharan dust outbreaks,
Geophys. Res. Lett.,
24, L04804, https://doi.org/10.1029/2009GL041774, 2010.
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
This study shows that incorporating aerosols into satellite radiance calculations affects the...
Altmetrics
Final-revised paper
Preprint