Articles | Volume 22, issue 3
https://doi.org/10.5194/acp-22-2153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation
Christian Barthlott
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research (IMK-TRO), Department Troposphere Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Amirmahdi Zarboo
Institute of Meteorology and Climate Research (IMK-TRO), Department Troposphere Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Takumi Matsunobu
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Christian Keil
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Related authors
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069, https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Short summary
We studied how climate change and cleaner air could affect severe storms in Central Europe. Using high-resolution weather simulations of past supercell storms under warmer and less polluted conditions, we found that storms may become more intense, with heavier rainfall and larger hailstones. These changes suggest an increased risk of damage in the future. Our findings help improve understanding of how extreme storms may evolve in a changing climate.
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, https://doi.org/10.5194/wcd-3-1273-2022, 2022
Short summary
Short summary
This study quantifies the impact of poorly constrained parameters used to represent aerosol–cloud–precipitation interactions on precipitation and cloud forecasts associated with uncertainties in input atmospheric states. Uncertainties in these parameters have a non-negligible impact on daily precipitation amount and largely change the amount of cloud. The comparison between different weather situations reveals that the impact becomes more important when convection is triggered by local effects.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022, https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Short summary
The relevance of microphysical and land-surface uncertainties for convective-scale predictability is evaluated with a combined-perturbation strategy in realistic convection-resolving simulations. We find a large ensemble spread which demonstrates that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe.
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069, https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Short summary
We studied how climate change and cleaner air could affect severe storms in Central Europe. Using high-resolution weather simulations of past supercell storms under warmer and less polluted conditions, we found that storms may become more intense, with heavier rainfall and larger hailstones. These changes suggest an increased risk of damage in the future. Our findings help improve understanding of how extreme storms may evolve in a changing climate.
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, https://doi.org/10.5194/wcd-3-1273-2022, 2022
Short summary
Short summary
This study quantifies the impact of poorly constrained parameters used to represent aerosol–cloud–precipitation interactions on precipitation and cloud forecasts associated with uncertainties in input atmospheric states. Uncertainties in these parameters have a non-negligible impact on daily precipitation amount and largely change the amount of cloud. The comparison between different weather situations reveals that the impact becomes more important when convection is triggered by local effects.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022, https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Short summary
The relevance of microphysical and land-surface uncertainties for convective-scale predictability is evaluated with a combined-perturbation strategy in realistic convection-resolving simulations. We find a large ensemble spread which demonstrates that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe.
Cited articles
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, 1989. a
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008. a
Altaratz, O., Koren, I., Remer, L., and Hirsch, E.: Review: Cloud invigoration
by aerosols–Coupling between microphysics and dynamics, Atmos. Res.,
140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. a, b
Barthlott, C. and Barrett, A. I.: Large impact of tiny model domain shifts for
the Pentecost 2014 mesoscale convective system over Germany, Weather Clim.
Dynam., 1, 207–224, https://doi.org/10.5194/wcd-1-207-2020, 2020. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289,
2008. a
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.:
Convection-permitting models: a step-change in rainfall forecasting,
Meteorol. Appl., 23, 165–181, https://doi.org/10.1002/met.1538, 2016. a
Cohard, J.-M. and Pinty, J.-P.: A comprehensive two-moment warm microphysical
bulk scheme. I: Description and tests., Q. J. Roy. Meteor. Soc., 126,
1815–1842, https://doi.org/10.1256/smsqj.56613, 2000. a
Costa-Surós, M., Sourdeval, O., Acquistapace, C., Baars, H., Carbajal Henken, C., Genz, C., Hesemann, J., Jimenez, C., König, M., Kretzschmar, J., Madenach, N., Meyer, C. I., Schrödner, R., Seifert, P., Senf, F., Brueck, M., Cioni, G., Engels, J. F., Fieg, K., Gorges, K., Heinze, R., Siligam, P. K., Burkhardt, U., Crewell, S., Hoose, C., Seifert, A., Tegen, I., and Quaas, J.: Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model, Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, 2020. a
Cui, Z., Davies, S., Carslaw, K. S., and Blyth, A. M.: The response of precipitation to aerosol through riming and melting in deep convective clouds, Atmos. Chem. Phys., 11, 3495–3510, https://doi.org/10.5194/acp-11-3495-2011, 2011. a
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta,
M., and Brdar, S.: Large eddy simulation using the general circulation model
ICON, J. Adv. Model. Earth Syst., 7, 963–986, https://doi.org/10.1002/2015MS000431,
2015. a
Fan, J., Wand, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol-Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73,
4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016. a
Gossard, E. E.: Measurement of Cloud Droplet Size Spectra by Doppler Radar,
J. Atmos. Ocean. Tech., 11, 712–726,
https://doi.org/10.1175/1520-0426(1994)011<0712:MOCDSS>2.0.CO;2, 1994. a
Grabowski, W. W. and Morrison, H.: Modeling Condensation in Deep Convection, J.
Atmos. Sci., 74, 2247–2267, https://doi.org/10.1175/JAS-D-16-0255.1, 2017. a, b
Grant, L. D. and van den Heever, S. C.: Cold pool and precipitation
responses to aerosol loading: Modulation by dry layers, J. Atmos. Sci., 72,
1398–1408, https://doi.org/10.1175/JAS-D-14-0260.1, 2015. a, b
Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Seasonal variability of Saharan desert dust and ice nucleating particles over Europe, Atmos. Chem. Phys., 15, 4389–4397, https://doi.org/10.5194/acp-15-4389-2015, 2015. a
Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Parameterizing cloud condensation nuclei concentrations during HOPE, Atmos. Chem. Phys., 16, 12059–12079, https://doi.org/10.5194/acp-16-12059-2016, 2016. a
Heinze, R., Dipankar, A., Carbajal Henken, C., Moseley, C., Sourdeval, O.,
Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C.,
Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S.,
Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A.,
Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S.,
Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B.,
Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F.,
Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F.,
Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,
Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: a comprehensive evaluation, Q. J. Roy.
Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017. a
Heise, E., Ritter, B., and Schrodin, E.: Operational implementation of the
multilayer soil model TERRA, Technical Report 9,
http://www.cosmo-model.org (last access: 18 September 2018), 19 pp.,
2006. a
Igel, A. L. and van den Heever, S. C.: The role of the gamma function shape parameter in determining differences between condensation rates in bin and bulk microphysics schemes, Atmos. Chem. Phys., 17, 4599–4609, https://doi.org/10.5194/acp-17-4599-2017, 2017a. a, b
Igel, A. L. and van den Heever, S. C.: The Importance of the Shape of Cloud
Droplet Size Distributions in Shallow Cumulus Clouds. Part I: Bin
Microphysics Simulations, J. Atmos. Sci., 74, 249–258,
https://doi.org/10.1175/JAS-D-15-0382.1, 2017b. a
Igel, A. L. and van den Heever, S. C.: The Importance of the Shape of Cloud
Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk
Microphysics Simulations, J. Atmos. Sci., 74, 259–273,
https://doi.org/10.1175/JAS-D-15-0383.1, 2017c. a, b, c
Igel, A. L. and van den Heever, S. C.: Invigoration or Enervation of Convective
Clouds by Aerosols?, Geophys. Res. Lett., 48, e2021GL093804,
https://doi.org/10.1029/2021GL093804, 2021. a
Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud formation:
Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, AAC
4-1–AAC 4-10, https://doi.org/10.1029/2001JD000470, 2002. a
Kärcher, B., Hendricks, J., and Lohmann, U.: Physically based
parameterization of cirrus cloud formation for use in global atmospheric
models, J. Geophys. Res., 111, d01205, https://doi.org/10.1029/2005JD006219, 2006. a
Keil, C., Heinlein, F., and Craig, G. C.: The convective adjustment time-scale
as indicator of predictability of convective precipitation, Q. J. Roy.
Meteor. Soc., 140, 480–490, https://doi.org/10.1002/qj.2143, 2014. a
Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., and Barthlott, C.:
Relative contribution of soil moisture, boundary-layer and microphysical
perturbations on convective predictability in different weather regimes, Q.
J. Roy. Meteor. Soc., 145, 3102–3115, https://doi.org/10.1002/qj.3607, 2019. a, b, c, d
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors Determining the Impact
of Aerosols on Surface Precipitation from Clouds: An Attempt at
Classification, J. Atmos. Sci., 65, 1721–1748, https://doi.org/10.1175/2007JAS2515.1,
2008. a
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O.,
Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den
Heever, S. C., and Yano, J.-I.: Representation of microphysical processes in
cloud-resolving models: Spectral (bin) microphysics versus bulk
parameterization, Rev. Geophys., 53, 247–322, https://doi.org/10.1002/2014RG000468,
2015. a
Lebo, Z. J. and Seinfeld, J. H.: Theoretical basis for convective invigoration due to increased aerosol concentration, Atmos. Chem. Phys., 11, 5407–5429, https://doi.org/10.5194/acp-11-5407-2011, 2011. a
Lebo, Z. J., Morrison, H., and Seinfeld, J. H.: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?, Atmos. Chem. Phys., 12, 9941–9964, https://doi.org/10.5194/acp-12-9941-2012, 2012. a, b
Leuenberger, D., Koller, M., Fuhrer, O., and Schär, C.: A Generalization of
the SLEVE Vertical Coordinate, Mon. Weather Rev., 138, 3683–3689,
https://doi.org/10.1175/2010MWR3307.1, 2010. a
Levin, M.: Functions to represent drop size distributions in clouds: The
optical density of clouds, Ser. Geofiz., 10, 698–702, 1958. a
Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I.,
Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., Matsui, T., Miltenberger,
A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.: Impacts of Varying
Concentrations of Cloud Condensation Nuclei On Deep Convective Cloud Updrafts
– A Multimodel Assessment, J. Atmos. Sci., 78, 1147–1172,
https://doi.org/10.1175/JAS-D-20-0200.1, 2021. a
Martins, J. A. and Silva Dias, M. A. F.: The impact of smoke from forest
fires on the spectral dispersion of cloud droplet size distributions in the
Amazonian region, Environ. Res. Lett., 4, 1–8,
https://doi.org/10.1088/1748-9326/4/1/015002, 2009. a
May, P. T., Bringi, V. N., and Thurai, M.: Do We Observe Aerosol Impacts on
DSDs in Strongly Forced Tropical Thunderstorms?, J. Atmos. Sci., 68,
1902–1910, https://doi.org/10.1175/2011JAS3617.1, 2011. a
Milbrandt, J. A. and Yau, M. K.: A multimoment bulk microphysics
parameterization. Part I: Analysis of the role of the spectral shape
parameter, J. Atmos. Sci., 62, 3051–3064, https://doi.org/10.1175/JAS3534.1, 2005. a
Miles, N. L., Verlinde, J., and Clothiaux, E. E.: Cloud Droplet Size
Distributions in Low-Level Stratiform Clouds, J. Atmos. Sci., 57, 295–311,
https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2, 2000. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J., Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018, Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, 2020. a
Morrison, H. and Grabowski, W. W.: Comparison of Bulk and Bin Warm-Rain
Microphysics Models Using a Kinematic Framework, J. Atmos. Sci., 64,
2839–2861, https://doi.org/10.1175/JAS3980, 2007. a, b
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Ong, C. R., Miura, H., and Koike, M.: The Terminal Velocity of Axisymmetric
Cloud Drops and Raindrops Evaluated by the Immersed Boundary Method, J.
Atmos. Sci., 78, 1129–1146, https://doi.org/10.1175/JAS-D-20-0161.1, 2021. a
Peng, Y., Lohmann, U., Leaitch, R., Banic, C., and Couture, M.: The cloud
albedo-cloud droplet effective radius relationship for clean and polluted
clouds from RACE and FIRE.ACE, J. Geophys. Res., 107, AAC 1-1–AAC 1-6,
https://doi.org/10.1029/2000JD000281, 2002. a
Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A., and Daniell, J.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background, Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, 2016. a
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO Newsletter
1, 89–97, http://www.cosmo-model.org (last access:
13 May 2020), 115 pp., 2001. a
Rasmussen, R. M. and Heymsfield, A. J.: Melting and Shedding of Graupel and
Hail. Part II: Sensitivity Study, J. Atmos. Sci., 44, 2764–2782,
https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2, 1987. a
Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON–ART 1.0 – a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659–1676, https://doi.org/10.5194/gmd-8-1659-2015, 2015. a
Rosenfeld, D., Lohmann, U., Raga, G., O'Dowd, C., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M.: Flood or Drought: How Do Aerosols Affect
Precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606,
2008. a
Rybka, H., Burkhardt, U., Köhler, M., Arka, I., Bugliaro, L., Görsdorf, U., Horváth, Á., Meyer, C. I., Reichardt, J., Seifert, A., and Strandgren, J.: The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON, Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021, 2021. a
Schneider, L., Barthlott, C., Barrett, A. I., and Hoose, C.: The precipitation
response to variable terrain forcing over low-mountain ranges in different
weather regimes, Q. J. Roy. Meteor. Soc., 144, 970–989,
https://doi.org/10.1002/qj.3250, 2018. a
Segal, Y. and Khain, A.: Dependence of droplet concentration on aerosol
conditions in different cloud types: application to droplet concentration
parameterization of aerosol conditions, J. Geophys. Res., 111, D15240,
https://doi.org/10.1029/2005JD006561, 2006. a
Seifert, A. and Beheng, K. D.: A double-moment parameterization for simulating
autoconversion, accretion and selfcollection, Atmos. Res., 59–60, 265–281,
https://doi.org/10.1016/S0169-8095(01)00126-0, 2001. a
Seifert, A., Köhler, C., and Beheng, K. D.: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model, Atmos. Chem. Phys., 12, 709–725, https://doi.org/10.5194/acp-12-709-2012, 2012. a, b
Serrano, D., Núñez, M., Utrillas, M. P., Marín, M. J., Marcos, C., and
Martínez-Lozano, J. A.: Effective cloud optical depth for overcast
conditions determined with a UV radiometers, Int. J. Climatol., 34,
3939–3952, https://doi.org/10.1002/joc.3953, 2014. a
Storer, R. L. and van den Heever, S. C.: Microphysical Processes Evident in
Aerosol Forcing of Tropical Deep Convective Clouds, J. Atmos. Sci., 70,
430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013. a
Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling Aerosol
Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67,
3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010.
a
Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role of
atmospheric aerosol concentration on deep convective precipitation:
Cloud-resolving model simulations, J. Geophys. Res., 112, D24S18,
https://doi.org/10.1029/2007JD008728, 2007. a
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369, 2012. a, b, c
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
van den Heever, S. C., Stephens, G. L., and Wood, N. B.: Aerosol indirect
effects on tropical convection characteristics under conditions of
radiative-convective equilibrium, J. Atmos. Sci., 68, 699–718,
https://doi.org/10.1175/2010JAS3603.1, 2011. a
Wellmann, C., Barrett, A. I., Johnson, J. S., Kunz, M., Vogel, B., Carslaw, K. S., and Hoose, C.: Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail, Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020, 2020. a
Wilhelm, J., Mohr, S., Punge, H. J., Mühr, B., Schmidberger, M., Daniell,
J. E., Bedka, K. M., and Kunz, M.: Severe thunderstorms with large hail
across Germany in June 2019, Weather, 76, 228–237, https://doi.org/10.1002/wea.3886, 2021. a
Zängl, G.: Extending the Numerical Stability Limit of Terrain-Following
Coordinate Models over Steep Slopes, Mon. Weather Rev., 140, 3722–3733,
https://doi.org/10.1175/MWR-D-12-00049.1, 2012. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc.,
141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
The relative impact of cloud condensation nuclei (CCN) concentrations and the shape parameter of the cloud droplet size distribution is evaluated in realistic convection-resolving simulations. We find that an increase in the shape parameter can produce almost as large a variation in precipitation as a CCN increase from maritime to polluted conditions. The choice of the shape parameter may be more important than previously thought for determining cloud radiative characteristics.
The relative impact of cloud condensation nuclei (CCN) concentrations and the shape parameter of...
Altmetrics
Final-revised paper
Preprint