Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-989-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-989-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N
Johannes Schneider
CORRESPONDING AUTHOR
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Ralf Weigel
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Thomas Klimach
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Antonis Dragoneas
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Oliver Appel
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Andreas Hünig
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Sergej Molleker
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Franziska Köllner
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Hans-Christian Clemen
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Oliver Eppers
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Peter Hoppe
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Peter Hoor
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Christoph Mahnke
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, 52425, Germany
Martina Krämer
Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, 52425, Germany
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Christian Rolf
Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, 52425, Germany
Jens-Uwe Grooß
Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, 52425, Germany
Andreas Zahn
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
Florian Obersteiner
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
Fabrizio Ravegnani
Institute of Atmospheric Sciences and Climate, ISAC-CNR, Bologna, 40129, Italy
Alexey Ulanovsky
Central Aerological Observatory, Dolgoprudny, Moscow region, 141700, Russia
Hans Schlager
Institute of Atmospheric Physics, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, 82234, Germany
Monika Scheibe
Institute of Atmospheric Physics, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, 82234, Germany
Glenn S. Diskin
NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
Joshua P. DiGangi
NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
John B. Nowak
NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
Martin Zöger
Flight Experiments, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, 82234, Germany
Stephan Borrmann
Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany
Viewed
Total article views: 3,835 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Aug 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,858 | 897 | 80 | 3,835 | 370 | 103 | 137 |
- HTML: 2,858
- PDF: 897
- XML: 80
- Total: 3,835
- Supplement: 370
- BibTeX: 103
- EndNote: 137
Total article views: 3,413 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Jan 2021)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,630 | 712 | 71 | 3,413 | 210 | 93 | 126 |
- HTML: 2,630
- PDF: 712
- XML: 71
- Total: 3,413
- Supplement: 210
- BibTeX: 93
- EndNote: 126
Total article views: 422 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Aug 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 228 | 185 | 9 | 422 | 160 | 10 | 11 |
- HTML: 228
- PDF: 185
- XML: 9
- Total: 422
- Supplement: 160
- BibTeX: 10
- EndNote: 11
Viewed (geographical distribution)
Total article views: 3,835 (including HTML, PDF, and XML)
Thereof 3,835 with geography defined
and 0 with unknown origin.
Total article views: 3,413 (including HTML, PDF, and XML)
Thereof 3,413 with geography defined
and 0 with unknown origin.
Total article views: 422 (including HTML, PDF, and XML)
Thereof 422 with geography defined
and 0 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 20 Nov 2025
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
During five aircraft missions, we detected aerosol particles containing meteoric material in the...
Altmetrics
Final-revised paper
Preprint