Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6023-2021
https://doi.org/10.5194/acp-21-6023-2021
Research article
 | 
22 Apr 2021
Research article |  | 22 Apr 2021

Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen

Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Athanasios Nenes on behalf of the Authors (02 Mar 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (04 Mar 2021) by Veli-Matti Kerminen
AR by Athanasios Nenes on behalf of the Authors (09 Mar 2021)  Manuscript 
Download
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
Altmetrics
Final-revised paper
Preprint