Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-16817-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16817-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reduced ice number concentrations in contrails from low-aromatic biofuel blends
German Aerospace Center, Oberpfaffenhofen, Germany
Christiane Voigt
German Aerospace Center, Oberpfaffenhofen, Germany
Department of Physics, Mathematics, and Computer Science, Institute of Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany
Daniel Sauer
German Aerospace Center, Oberpfaffenhofen, Germany
Stefan Kaufmann
German Aerospace Center, Oberpfaffenhofen, Germany
Valerian Hahn
German Aerospace Center, Oberpfaffenhofen, Germany
Monika Scheibe
German Aerospace Center, Oberpfaffenhofen, Germany
Hans Schlager
German Aerospace Center, Oberpfaffenhofen, Germany
Felix Huber
German Aerospace Center, Oberpfaffenhofen, Germany
Department of Aerospace Engineering, Institute of Space Technology and Space Applications, University of the Federal Armed Forces in Munich, Munich, Germany
Patrick Le Clercq
Institute of Combustion Technology, German Aerospace Center, Stuttgart, Germany
Richard H. Moore
NASA Langley Research Center, Hampton, Virginia, USA
Bruce E. Anderson
NASA Langley Research Center, Hampton, Virginia, USA
Data sets
Public Projects List: NDMAX M. Yang-Martin https://science-data.larc.nasa.gov/aero-fp/projects/
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal...
Altmetrics
Final-revised paper
Preprint