Articles | Volume 21, issue 22
https://doi.org/10.5194/acp-21-16775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16775-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Daniel J. Jacob
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Jared F. Brewer
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Jonathan M. Moch
Harvard John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA
Jhoon Kim
Department of Atmospheric Sciences, Yonsei University, Seoul, Republic
of Korea
Samsung Particulate Matter Research Institute, Samsung Advanced
Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do, Republic of Korea
Seoyoung Lee
Department of Atmospheric Sciences, Yonsei University, Seoul, Republic
of Korea
Hyunkwang Lim
Department of Atmospheric Sciences, Yonsei University, Seoul, Republic
of Korea
Hyun Chul Lee
Samsung Particulate Matter Research Institute, Samsung Advanced
Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do, Republic of Korea
Su Keun Kuk
Samsung Particulate Matter Research Institute, Samsung Advanced
Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do, Republic of Korea
Rokjin J. Park
School of Earth and Environmental Sciences, Seoul National University,
Seoul, Republic of Korea
Jaein I. Jeong
School of Earth and Environmental Sciences, Seoul National University,
Seoul, Republic of Korea
Xuan Wang
School of Energy and Environment, City University of Hong Kong, Hong
Kong SAR, China
Pengfei Liu
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, GA, USA
Atmospheric Sciences Research Center, University at Albany, Albany,
New York, USA
Fangqun Yu
Atmospheric Sciences Research Center, University at Albany, Albany,
New York, USA
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California, USA
Randall V. Martin
Department of Energy, Environmental and Chemical Engineering,
Washington University in St. Louis, St. Louis, MO, USA
Katherine R. Travis
NASA Langley Research Center, Hampton, VA, USA
Johnathan W. Hair
NASA Langley Research Center, Hampton, VA, USA
Bruce E. Anderson
NASA Langley Research Center, Hampton, VA, USA
Jack E. Dibb
Institute for the Study of Earth, Oceans, and Space, University of
New Hampshire, Durham, NH, USA
Jose L. Jimenez
Department of Chemistry, Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, CO, USA
Pedro Campuzano-Jost
Department of Chemistry, Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, CO, USA
Benjamin A. Nault
Department of Chemistry, Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, CO, USA
now at: Center for Aerosol and Cloud Chemistry, Aerodyne Research,
Inc., Billerica, MA, USA
Jung-Hun Woo
Department of Civil and Environmental Engineering, Konkuk University,
Seoul, Republic of Korea
Younha Kim
International Institute for Applied Systems Analysis (IIASA), 2361
Laxenburg, Austria
Qiang Zhang
Department of Earth System Science, Tsinghua University, Beijing,
China
Hong Liao
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, School of Environmental Science and
Engineering, Nanjing University of Information Science and Technology,
Nanjing, China
Data sets
KORUS-AQ aircraft dataset A. Aknan, A. and Chen, G. https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01
KORUS-AQ Emissions version 5.0 Climate change and Air quality Information Systems research group http://aisl.konkuk.ac.kr/#/emission_data/korus-aq_emissions
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring...
Altmetrics
Final-revised paper
Preprint