Articles | Volume 21, issue 21
https://doi.org/10.5194/acp-21-16479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16479-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
Anthony Y. H. Wong
Department of Earth and Environment, Boston University, Boston, MA, USA
Department of Earth and Environment, Boston University, Boston, MA, USA
Related authors
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
Biogeosciences, 22, 4823–4849, https://doi.org/10.5194/bg-22-4823-2025, https://doi.org/10.5194/bg-22-4823-2025, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with nine models at different land types worldwide, driven by measurement data. The models mostly estimated reasonable summertime ozone flux to plants. The model results varied by land cover, mainly related to the a lack of moisture in the soil. This work is an important step for assessing the ozone impact on vegetation.
Anthony Y. H. Wong, Sebastian D. Eastham, Erwan Monier, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2663, https://doi.org/10.5194/egusphere-2025-2663, 2025
Short summary
Short summary
We developed a fast and accurate computer tool that predicts how air pollution levels will change around the world under different climate and policy choices. Using machine learning and real model data, our tool can estimate changes in harmful fine particulate pollution in seconds instead of thousands of hours. This makes it easier for researchers and policymakers to explore future air quality and health impacts under a wide range of scenarios.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
Biogeosciences, 22, 4823–4849, https://doi.org/10.5194/bg-22-4823-2025, https://doi.org/10.5194/bg-22-4823-2025, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with nine models at different land types worldwide, driven by measurement data. The models mostly estimated reasonable summertime ozone flux to plants. The model results varied by land cover, mainly related to the a lack of moisture in the soil. This work is an important step for assessing the ozone impact on vegetation.
Anthony Y. H. Wong, Sebastian D. Eastham, Erwan Monier, and Noelle E. Selin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2663, https://doi.org/10.5194/egusphere-2025-2663, 2025
Short summary
Short summary
We developed a fast and accurate computer tool that predicts how air pollution levels will change around the world under different climate and policy choices. Using machine learning and real model data, our tool can estimate changes in harmful fine particulate pollution in seconds instead of thousands of hours. This makes it easier for researchers and policymakers to explore future air quality and health impacts under a wide range of scenarios.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Cited articles
Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.
Ansari, A. S. and Pandis, S. N.: Response of inorganic PM to precursor
concentrations, Environ. Sci. Technol., 32, 2706–2714,
https://doi.org/10.1021/es971130j, 1998.
Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., and Pleim, J. E.: Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model, Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, 2013.
Bauer, S. E., Tsigaridis, K., and Miller, R.: Significant atmospheric aerosol
pollution caused by world food cultivation, Geophys. Res. Lett., 43,
5394–5400, https://doi.org/10.1002/2016GL068354, 2016.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res. Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore,
M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B.,
Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries,
W.: Global assessment of nitrogen deposition effects on terrestrial plant
diversity: A synthesis, Ecol. Appl., 20, 30–59, https://doi.org/10.1890/08-1140.1, 2010.
Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as
patches of plant functional types: An integrating concept for climate and
ecosystem models, Global Biogeochem. Cycles, 16, 5-1-5–23,
https://doi.org/10.1029/2000gb001360, 2002.
Breuninger, C., Meixner, F. X., and Kesselmeier, J.: Field investigations of nitrogen dioxide (NO2) exchange between plants and the atmosphere, Atmos. Chem. Phys., 13, 773–790, https://doi.org/10.5194/acp-13-773-2013, 2013.
Chaparro-Suarez, I. G., Meixner, F. X., and Kesselmeier, J.: Nitrogen dioxide
(NO2) uptake by vegetation controlled by atmospheric concentrations and
plant stomatal aperture, Atmos. Environ., 45, 5742–5750,
https://doi.org/10.1016/j.atmosenv.2011.07.021, 2011.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the
world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Claverie, M., Matthews, J. L., Vermote, E. F., and Justice, C. O.: A 30+
year AVHRR LAI and FAPAR climate data record: Algorithm description and
validation, Remote Sens., 8, 263, https://doi.org/10.3390/rs8030263, 2016.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
Ellis, E. C.: Ecology in an anthropogenic biosphere, Ecol. Monogr., 85,
287–331, https://doi.org/10.1890/14-2274.1, 2015.
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., and
Verburg, P. H.: Used planet: A global history, Proc. Natl. Acad. Sci. USA, 110, 7978–7985, https://doi.org/10.1073/pnas.1217241110, 2013.
Fageria, N. K. and Baligar, V. C.: Enhancing Nitrogen Use Efficiency in Crop
Plants, Adv. Agron., 88, 97–185, https://doi.org/10.1016/S0065-2113(05)88004-6, 2005.
Fang, H., Li, W., and Myneni, R. B.: The Impact of Potential Land Cover
Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical
Perspective, Remote Sens., 5, 830–844, https://doi.org/10.3390/rs5020830, 2013.
Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R.,
Geiser, L., Bowman, W. D., Sickman, J. O., Meixner, T., Johnson, D. W., and
Neitlich, P.: Ecological effects of nitrogen deposition in the western
United States, Bioscience,
https://doi.org/10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2, 2003.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C.,
Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C.,
Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and
Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478,
337–342, https://doi.org/10.1038/nature10452, 2011.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K Ca Mg NH Na SO NO Cl−−H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fu, Y. and Tai, A. P. K.: Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010, Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, 2015.
Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T., and Hao, J.: Increasing
Ammonia Concentrations Reduce the Effectiveness of Particle Pollution
Control Achieved via SO2 and NOX Emissions Reduction in East China, Environ.
Sci. Technol. Lett., 4, 221–227, https://doi.org/10.1021/acs.estlett.7b00143, 2017.
Fu, Y., Tai, A. P. K., and Liao, H.: Impacts of historical climate and land cover changes on fine particulate matter (PM2.5) air quality in East Asia between 1980 and 2010, Atmos. Chem. Phys., 16, 10369–10383, https://doi.org/10.5194/acp-16-10369-2016, 2016.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z.,
Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.:
Transformation of the nitrogen cycle: Recent trends, questions, and
potential solutions, Science, 320, 889–892, https://doi.org/10.1126/science.1136674, 2008.
Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B.,
and Lelieveld, J.: Impact of future land use and land cover changes on
atmospheric chemistry-climate interactions, J. Geophys. Res., 115,
D23301, https://doi.org/10.1029/2010JD014041, 2010.
Geddes, J. A. and Martin, R. V.: Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns, Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, 2017.
Geddes, J. A., Heald, C. L., Silva, S. J., and Martin, R. V.: Land cover change impacts on atmospheric chemistry: Simulating projected large-scale tree mortality in the United States, Atmos. Chem. Phys. Discuss., 15, 29303–29345, https://doi.org/10.5194/acpd-15-29303-2015, 2015.
Geddes, J. A., Heald, C. L., Silva, S. J., and Martin, R. V.: Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States, Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giannadaki, D., Giannakis, E., Pozzer, A., and Lelieveld, J.: Estimating
health and economic benefits of reductions in air pollution from
agriculture, Sci. Total Environ., 622–623, 1304–1316,
https://doi.org/10.1016/j.scitotenv.2017.12.064, 2018.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guo, Y., Chen, Y., Searchinger, T. D., Zhou, M., Pan, D., Yang, J., Wu, L.,
Cui, Z., Zhang, W., Zhang, F., Ma, L., Sun, Y., Zondlo, M. A., Zhang, L., and
Mauzerall, D. L.: Air quality, nitrogen use efficiency and food security in
China are improved by cost-effective agricultural nitrogen management, Nat.
Food, 1, 648–658, https://doi.org/10.1038/s43016-020-00162-z, 2020.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.
G.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hardacre, C. J., Palmer, P. I., Baumanns, K., Rounsevell, M., and Murray-Rust, D.: Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs, Atmos. Chem. Phys., 13, 5451–5472, https://doi.org/10.5194/acp-13-5451-2013, 2013.
Heald, C. L. and Geddes, J. A.: The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone, Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, 2016.
Heald, C. L. and Spracklen, D. V.: Land Use Change Impacts on Air Quality
and Climate, Chem. Rev., 115, 4476–4496, https://doi.org/10.1021/cr500446g, 2015.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J. F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Godstein, A. H., and
Fung, I.: Predicted change in global secondary organic aerosol
concentrations in response to future climate, emissions, and land use
change, J. Geophys. Res. Atmos., 113, D05211, https://doi.org/10.1029/2007JD009092, 2008.
Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295–10312, https://doi.org/10.5194/acp-12-10295-2012, 2012.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018 (data available at: https://esgf-node.llnl.gov/search/input4mips, last access: 26 March 2021).
Hollaway, M. J., Arnold, S. R., Collins, W. J., Folberth, G., and Rap, A.:
Sensitivity of midnineteenth century tropospheric ozone to atmospheric
chemistry-vegetation interactions, J. Geophys. Res. Atmos., 122,
2452–2473, https://doi.org/10.1002/2016JD025462, 2017.
Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C.,
Wirks, C. K., and Shah, V.: The Role of Clouds in the Tropospheric NOx Cycle:
A New Modeling Approach for Cloud Chemistry and Its Global Implications,
Geophys. Res. Lett., 46, 4980–4990, https://doi.org/10.1029/2019GL081990, 2019.
Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.
Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M., and Zhu, Z.:
Inconsistencies of interannual variability and trends in long-term satellite
leaf area index products, Glob. Chang. Biol., 23, 4133–4146,
https://doi.org/10.1111/gcb.13787, 2017.
Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C.,
and Goldewijk, K. K.: Holocene carbon emissions as a result of anthropogenic
land cover change, Holocene, 21, 775–791, https://doi.org/10.1177/0959683610386983,
2011.
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., and
Lindquist, E.: Dynamics of global forest area: Results from the FAO Global
Forest Resources Assessment 2015, For. Ecol. Manage., 352, 9–20,
https://doi.org/10.1016/j.foreco.2015.06.014, 2015.
Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J. L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, 2015.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Meteorol. Zeitschrift, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Lai, L., Huang, X., Yang, H., Chuai, X., Zhang, M., Zhong, T., Chen, Z.,
Chen, Y., Wang, X., and Thompson, J. R.: Carbon emissions from land-use
change and management in China between 1990 and 2010, Sci. Adv., 2, e1601063,
https://doi.org/10.1126/sciadv.1601063, 2016.
Langholtz, M., Davison, B. H., Jager, H. I., Eaton, L., Baskaran, L. M.,
Davis, M., and Brandt, C. C.: Increased nitrogen use efficiency in crop
production can provide economic and environmental benefits, Sci. Total
Environ., 758, 143602, https://doi.org/10.1016/j.scitotenv.2020.143602,
2021.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.
Biogeosciences, 112, G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lee, C. J., Martin, R. V., Henze, D. K., Brauer, M., Cohen, A., and
Van Donkelaar, A.: Response of global particulate-matter-related mortality
to changes in local precursor emissions, Environ. Sci. Technol., 49, 4335–4344, https://doi.org/10.1021/acs.est.5b00873, 2015.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Lerdau, M. T., Munger, J. W., and Jacob, D. J.: The NO2 flux conundrum,
Science, 289, 2291–2293, https://doi.org/10.1126/science.289.5488.2291,
2000.
Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., and Peng, S.: Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015), Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, 2018, data available at: ftp://geo10.elie.ucl.ac.be/CCI/LandCover/ESACCI-LC-L4-LCCS-Map-300m-P1Y-1992_2015-v2.0.7b.nc.zip, last access: 15 May 2020.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb
and 7Be on wet deposition and transport in a global three-dimensional
chemical tracer model driven by assimilated meteorological fields, J.
Geophys. Res. Atmos., 106, 12109–12128, https://doi.org/10.1029/2000JD900839,
2001.
Lotze-Campen, H., Popp, A., Beringer, T., Müller, C., Bondeau, A., Rost,
S., and Lucht, W.: Scenarios of global bioenergy production: The trade-offs
between agricultural expansion, intensification and trade, Ecol. Modell.,
221, 2188–2196, https://doi.org/10.1016/j.ecolmodel.2009.10.002, 2010.
Luo, G., Yu, F., and Schwab, J.: Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States, Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019, 2019.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res. Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
Matsuura, K. and Willmott, C. J.: Terrestrial Air Temperature: 1900–2010 Gridded Monthly Time Series, available at: http://climate.geog.udel.edu/~climate/html_pages/Global2011/GlobalTsT2011.html (last access: 26 August 2020), 2012.
Mauser, W., Klepper, G., Zabel, F., Delzeit, R., Hank, T., Putzenlechner, B.,
and Calzadilla, A.: Global biomass production potentials exceed expected
future demand without the need for cropland expansion, Nat. Commun., 6, 1–11, https://doi.org/10.1038/ncomms9946, 2015.
Moriarty, F.: Air quality guidelines for Europe, Environ. Pollut., 55,
77, https://doi.org/10.1016/0269-7491(88)90163-7, 1988.
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.:
Optimized regional and interannual variability of lightning in a global
chemical transport model constrained by LIS/OTD satellite data, J. Geophys.
Res. Atmos., 117, https://doi.org/10.1029/2012JD017934, 2012.
Paulot, F. and Jacob, D. J.: Hidden cost of U.S. agricultural exports:
Particulate matter from ammonia emissions, Environ. Sci. Technol., 48,
903–908, https://doi.org/10.1021/es4034793, 2014.
Payne, R. J., Dise, N. B., Field, C. D., Dore, A. J., Caporn, S. J. M., and
Stevens, C. J.: Nitrogen deposition and plant biodiversity: past, present,
and future, Front. Ecol. Environ., 15, 431–436, https://doi.org/10.1002/fee.1528, 2017.
Peng, Y. P., Chen, K. S., Lai, C. H., Lu, P. J., and Kao, J. H.:
Concentrations of H2O2 and HNO3 and O3-VOC-NOx sensitivity in ambient air in southern Taiwan, Atmos. Environ., 40, 6741–6751, https://doi.org/10.1016/j.atmosenv.2006.05.079, 2006.
Petetin, H., Sciare, J., Bressi, M., Gros, V., Rosso, A., Sanchez, O., Sarda-Estève, R., Petit, J.-E., and Beekmann, M.: Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model, Atmos. Chem. Phys., 16, 10419–10440, https://doi.org/10.5194/acp-16-10419-2016, 2016.
Pinder, R. W., Adams, P. J., and Pandis, S. N.: Ammonia emission controls as
a cost-effective strategy for reducing atmospheric particulate matter in the
Eastern United States, Environ. Sci. Technol., 41, 380–386,
https://doi.org/10.1021/es060379a, 2007.
Potapov, P. V., Turubanova, S. A., Tyukavina, A., Krylov, A. M., McCarty, J.
L., Radeloff, V. C., and Hansen, M. C.: Eastern Europe's forest cover
dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote
Sens. Environ., 159, 28–43, https://doi.org/10.1016/j.rse.2014.11.027, 2015.
Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A., and Lelieveld, J.: Impact of agricultural emission reductions on fine-particulate matter and public health, Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017, 2017.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth
Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Sillman, S.: The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res., 100, 14 175–14 188, https://doi.org/10.1029/94JD02953, 1995.
Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to
nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys.
Res., 95, 1837–1851, https://doi.org/10.1029/JD095iD02p01837, 1990.
Silva, S. J., Heald, C. L., Geddes, J. A., Austin, K. G., Kasibhatla, P. S., and Marlier, M. E.: Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia, Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, 2016.
Skjøth, C. A. and Hertel, O.: Ammonia Emissions in Europe, in Urban Air
Quality in Europe, 141–163, Springer, https://doi.org/10.1007/698_2012_206, 2013.
Sobota, D. J., Compton, J. E., McCrackin, M. L., and Singh, S.: Cost of
reactive nitrogen release from human activities to the environment in the
United States, Environ. Res. Lett., 10, 025006, https://doi.org/10.1088/1748-9326/10/2/025006, 2015.
Sofen, E. D., Bowdalo, D., Evans, M. J., Apadula, F., Bonasoni, P., Cupeiro, M., Ellul, R., Galbally, I. E., Girgzdiene, R., Luppo, S., Mimouni, M., Nahas, A. C., Saliba, M., and Tørseth, K.: Gridded global surface ozone metrics for atmospheric chemistry model evaluation, Earth Syst. Sci. Data, 8, 41–59, https://doi.org/10.5194/essd-8-41-2016, 2016.
Song-Miao Fan, Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D.
R.: Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon
forest, J. Geophys. Res., 95, 16 851–16 864, https://doi.org/10.1029/jd095id10p16851, 1990.
Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A.: Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, 2014.
Steinkamp, J. and Lawrence, M. G.: Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM, Atmos. Chem. Phys., 11, 6063–6082, https://doi.org/10.5194/acp-11-6063-2011, 2011.
Tai, A. P. K., Mickley, L. J., Heald, C. L., and Wu, S.: Effect of CO2
inhibition on biogenic isoprene emission: Implications for air quality under
2000 to 2050 changes in climate, vegetation, and land use, Geophys. Res.
Lett., 40, 3479–3483, https://doi.org/10.1002/grl.50650, 2013.
The International GEOS-Chem User Community: geoschem/geos-chem: GEOS-Chem 12.7.0, Zenodo [code], https://doi.org/10.5281/zenodo.3634864, 2020.
Ti, C., Xia, L., Chang, S. X., and Yan, X.: Potential for mitigating global
agricultural ammonia emission: A meta-analysis, Environ. Pollut., 245, 141–148, https://doi.org/10.1016/j.envpol.2018.10.124, 2019.
U.S. EPA: 2014 National Emissions Inventory, version 2 Technical Support
Document, U.S. Environmental Protection Agency, (July) [online], available
at: https://www.epa.gov/sites/production/files/2018-06/documents/nei2014v2_tsd_09may2018.pdf (last access: 18 September 2021), 2018.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world with less sulfate, Atmos. Chem. Phys., 18, 12765–12775, https://doi.org/10.5194/acp-18-12765-2018, 2018.
WallisDeVries, M. F. and Bobbink, R.: Nitrogen deposition impacts on
biodiversity in terrestrial ecosystems: Mechanisms and perspectives for
restoration, Biol. Conserv., 212, 387–389,
https://doi.org/10.1016/j.biocon.2017.01.017, 2017.
Wang, L., Tai, A. P. K., Tam, C.-Y., Sadiq, M., Wang, P., and Cheung, K. K. W.: Impacts of future land use and land cover change on mid-21st-century surface ozone air quality: distinguishing between the biogeophysical and biogeochemical effects, Atmos. Chem. Phys., 20, 11349–11369, https://doi.org/10.5194/acp-20-11349-2020, 2020.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R. H.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res., 119, 195–206, https://doi.org/10.1002/2013JD020824, 2014.
Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry – 1. Model formulation, J. Geophys. Res. D. Atmos., 103, 10713–10725, https://doi.org/10.1029/98jd00158, 1998.
Weagle, C. L., Snider, G., Li, C., Van Donkelaar, A., Philip, S.,
Bissonnette, P., Burke, J., Jackson, J., Latimer, R., Stone, E., Abboud, I.,
Akoshile, C., Anh, N. X., Brook, J. R., Cohen, A., Dong, J., Gibson, M. D.,
Griffith, D., He, K. B., Holben, B. N., Kahn, R., Keller, C. A., Kim, J. S.,
Lagrosas, N., Lestari, P., Khian, Y. L., Liu, Y., Marais, E. A., Martins, J.
V., Misra, A., Muliane, U., Pratiwi, R., Quel, E. J., Salam, A., Segev, L.,
Tripathi, S. N., Wang, C., Zhang, Q., Brauer, M., Rudich, Y., and Martin, R.
V.: Global Sources of Fine Particulate Matter: Interpretation of PM2.5
Chemical Composition Observed by SPARTAN using a Global Chemical Transport
Model, Environ. Sci. Technol., 52, 11670–11681,
https://doi.org/10.1021/acs.est.8b01658, 2018.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 41(SUPPL.),
52–63, https://doi.org/10.1016/j.atmosenv.2007.10.058, 1989.
Wichink Kruit, R. J., Schaap, M., Sauter, F. J., van Zanten, M. C., and van Pul, W. A. J.: Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange, Biogeosciences, 9, 5261–5277, https://doi.org/10.5194/bg-9-5261-2012, 2012.
Wong, A. Y. H.: GEOS-Chem model configuration and land cover input files, available at: https://open.bu.edu/handle/2144/43267, last access: 4 November 2021.
Wong, A. Y. H., Geddes, J. A., Tai, A. P. K., and Silva, S. J.: Importance of dry deposition parameterization choice in global simulations of surface ozone, Atmos. Chem. Phys., 19, 14365–14385, https://doi.org/10.5194/acp-19-14365-2019, 2019.
Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J.: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century, Atmos. Chem. Phys., 12, 1597–1609, https://doi.org/10.5194/acp-12-1597-2012, 2012a.
Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J.: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century, Atmos. Chem. Phys., 12, 1597–1609, https://doi.org/10.5194/acp-12-1597-2012, 2012b.
Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., and Song, J.:
Long-Time-Series Global Land Surface Satellite Leaf Area Index Product
Derived from MODIS and AVHRR Surface Reflectance, IEEE Trans. Geosci. Remote
Sens., 54, 5301–5318, https://doi.org/10.1109/TGRS.2016.2560522 2016, data available at http://globalchange.bnu.edu.cn/research/laiv6#download, last access: 15 May 2020.
Xu, R., Tian, H., Pan, S., Prior, S. A., Feng, Y., Batchelor, W. D., Chen,
J., and Yang, J.: Global ammonia emissions from synthetic nitrogen fertilizer
applications in agricultural systems: Empirical and process-based estimates
and uncertainty, Glob. Chang. Biol., 25, 314–326, https://doi.org/10.1111/gcb.14499,
2019.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle
dry deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.
Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface
exchange of atmospheric ammonia: A review of measurements and a development
of a big-leaf model for applications in regional-scale air-quality models,
J. Geophys. Res. Atmos., 115, D20310, https://doi.org/10.1029/2009JD013589, 2010.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R., and Myneni, R. B.: Global data sets of vegetation leaf
area index (LAI)3 g and fraction of photosynthetically active radiation
(FPAR)3 g derived from global inventory modeling and mapping studies (GIMMS)
normalized difference vegetation index (NDVI3G) for the period 1981 to 2,
Remote Sens., 5, 927–948, https://doi.org/10.3390/rs5020927, 2013.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy,
N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Chang., 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Land cover change and land management are considered to have important and distinct impacts on...
Altmetrics
Final-revised paper
Preprint