Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause event
David E. Siskind
CORRESPONDING AUTHOR
Space Science Division, Naval Research Laboratory, Washington DC, USA
V. Lynn Harvey
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Fabrizio Sassi
Space Science Division, Naval Research Laboratory, Washington DC, USA
John P. McCormack
Space Science Division, Naval Research Laboratory, Washington DC, USA
now at: Heliophysics Division, National Aeronautics and Space Administration, Washington DC, USA
Cora E. Randall
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder CO, USA
Mark E. Hervig
GATS Inc., Driggs ID, USA
Scott M. Bailey
Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, USA
Related authors
No articles found.
Monika E. Szelag, Viktoria F. Sofieva, Edward Malina, Pekka T. Verronen, Michelle L. Santee, Manuel López-Puertas, Bernd Funke, Gabriele Stiller, Alexandra Laeng, Kaley A. Walker, Patrick E. Sheese, Mark E. Hervig, and Benjamin T. Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2025-6236, https://doi.org/10.5194/egusphere-2025-6236, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We present a new global dataset of ozone profiles in the mesosphere and lower thermosphere, created by combining several satellite measurements covering more than three decades. Our results show that ozone is recovering in the stratosphere but decreasing in the mesosphere, with the strongest declines near the mesopause. This dataset provides a valuable resource for investigating long-term changes, improving model performance, and addressing an observational gap in the upper atmosphere.
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Cited articles
ACE/SCISAT: ACE/SCISAT Database, Level 2 Data Access, [data set], available at: https://databace.scisat.ca/l2signup.php, last access: 26 August 2021.
Andersson, M. E., Verronen, P. T., Marsh, D. R., Paivarinta, S.-M., and Plane, J. M. C.:
WACCM-D Improved modeling of nitric acid and
active chlorine during energetic particle precipitation, J. Geophys. Res., 121, 10328–10341,
https://doi.org/10.1002/2015JD024173, 2016.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, vol 40 Int'l Geophys Series, 489 pp., 1987.
Bailey, S. M., Thurairajah, B., Randall, C. E., Holt, L., Siskind, D. E., Harvey, V. L., Venkataramani, K.,
Hervig, M. E., Rong, P. P., and
Russell, J. M.: A multi tracer analysis of thermosphere to stratosphere descent triggered by the 2013 stratospheric sudden warming, Geophys. Res. Lett., 41, 5216–5222, https://doi.org/10.1002/2014GL059860, 2014.
Barth, C. A., Tobiska, W. E., Siskind, D. E., and Cleary, D. D.: Solar-terrestrial coupling: Low-latitude thermospheric nitric oxide, Geophys. Res. Lett., 15, 92–94, 1988.
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C.,
Coheur, P.-F., Colin,R., DeCola, P., DeMaziere, M., Drummond, J. R., Dufour, D., Eveans, W. F. J., Fast, H., Fussen, D., Gilbert, K.,
Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell., J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C.,
Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J.,
Souch, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.:
Atmospheric chemistry experiment (ACE): mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Chandran, A., Collins, R. L., Garcia, R. R., and Marsh, D. R.:
A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model,
Geophys. Res. Lett., 38, L08804, https://doi.org/10.1029/2010GL046566, 2011.
Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., and de la Torre, L.: A climatology of elevated stratopause events in the whole atmosphere community climate model,
J. Geophys. Res., 118, 1234–1246, https://doi.org/10.1002/jgrd.50123, 2013.
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and Niciejewski, R.:
Short-term and interannual variations of migrating diurnal and semidiurnal tides in the mesosphere
and lower thermosphere, J. Geophys. Res., 123, 7106–7123,
https://doi.org/10.1029/2018JA025748, 2018.
Duderstadt, K. A., Huang, C.-L., Spence, H. E., Smith, S., Blake, J. B., Crew, A. B., Johnson, A. T., Klumpar, D. M., Marsh, D. R., Sample, J. G., Shumko, M., and Vitt, F. M.: Estimating the impacts of
radiation belt electrons on atmospheric chemistry using FIREBIRD II and Van Allen Probes observations,
J. Geophys. Res., 126, e2020JD033098, https://doi.org/10.1029/2020JD033098, 2021.
Eckermann, S. D., Ma, J., Hoppel, K. W., Kuhl, D. D., Allen, D. R., Doyle, J. A., Viner, K. C., Ruston, B. C.,
Baker, N. L., Swadley, S. D., Whitcomb, T. R., Reynolds, C. A., Xu, L., Kaifler, N., Kaifler, B., Reid, I. M.,
Murphy, D. J., and Love, P. T.: High altitude (0-100 km) global reanalysis system: Description
and application to the 2014 Austral Winter of the Deep Propagating Gravity Wave
Experiment (DEEPWAVE), Mon. Weather Rev., 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1, 2018.
Funke, B., Lopez-Puertas, M., Gil-Lopez, S., von Clarmann, T., Stiller, G. P., Fischer, H.,
and Kellman, S.: Downward transport of upper atmospheric NOx into the polar stratosphere and lower
mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters, J. Geophys. Res, 110, D24308,
https://doi.org/10.1029/2005JD006463, 2005.
Funke, B., Lopez-Puertas, M., Holt, L., Randall, C. E., Stiller, G. P., and von Clarmann, T.: Hemispheric
distributions and interannual variability of NOy produced by energetic particle precipation in 2002-2012,
J. Geophys. Res., 119, 13565–13582, https://doi.org/10.1002/2014JD022423., 2014a.
Funke, B., Puertas, M.-L., Stiller, G. P., and von Clarmann, T.: Mesospheric and stratospheric
NOy produced by energetic particle precipitation during 2002-2012, J. Geophys. Res., 199
4429–4446, https://doi.org/10.1002/2013JD021404, 2014b.
Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V. L., Lambert, A., López-Puertas, M., Marsh, D. R., Meraner, K., Nieder, H., Päivärinta, S.-M., Pérot, K., Randall, C. E., Reddmann, T., Rozanov, E., Schmidt, H., Seppälä, A., Sinnhuber, M., Sukhodolov, T., Stiller, G. P., Tsvetkova, N. D., Verronen, P. T., Versick, S., von Clarmann, T., Walker, K. A., and Yushkov, V.: HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009, Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, 2017.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Moloid, A., Takacs, L., Randles, C. A.,
Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C.,
Akella, S., Buchard, V., Conaty, A., Da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerard, J. C. and Barth, C. A.: High latitude nitric oxide in the lower thermosphere, J. Geophys.
Res., 82, 674–680, 1977.
Gordon, E. M., Seppälä, A., and Tamminen, J.: Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations, Atmos. Chem. Phys., 20, 6259–6271, https://doi.org/10.5194/acp-20-6259-2020, 2020.
Harvey, V. L., Pierce, R. B., Fairlie, T. D., and Hitchman, M. H.: A climatology of
stratospheric polar vortices and anticyclones, J. Geophys. Res., 107, 4442,
https://doi.org/10.1029/2001JD001471, 2002.
Harvey, V. L., Randall, C. E., and Hitchman, M. H.: Breakdown of potential vorticity-based equivalent latitude
as a vortex-centered coordinate in the polar winter mesosphere, J. Geophys. Res., 114, D22015,
https://doi.org/10.1029/2009JD012681, 2009.
Harvey, V. L., Datta-Barua S., Wang, N., Pedatella, N. M., Randall, C. E., Siskind, D. E., and
Van Caspel, W. E.: NO transport via lagrangian coherent sructures into the top of the polar vortex,
J. Geophys. Res., 126, e2020JD034523, https://doi.org/10.1029/2020JD034523, 2021.
Hauchecorne, A., Bertoux, J.-L., Dalaudier, F., Russell, J. M., Mlynczak, M. G., Kyrola, E.,
and Fussen, D.: Large increase of NO2 in the north polar mesosphere in January-February 2004:
Evidence for a dynamical origin from GOMOS, ENVISAT and SABER/TIMED data, Geophys. Res. Lett., 34, L03810,
https://doi.org/10.1029/2006GL027628, 2007.
Hendrickx, K., Megner, L., Marsh, D. R., and Smith-Johnsen, C.: Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models, Atmos. Chem. Phys., 18, 9075–9089, https://doi.org/10.5194/acp-18-9075-2018, 2018.
Hervig, M. E., Marshall, B. T., Bailey, S. M., Siskind, D. E., Russell III, J. M., Bardeen, C. G., Walker, K. A., and Funke, B.: Validation of Solar Occultation for Ice Experiment (SOFIE) nitric oxide measurements, Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, 2019.
Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., Baker, N. L., McCormack, J. P., Viner, K. C., McLay, J. G., Flatau, M. K., Xu, L., Chen, C.,
and Chang, S. W.: The navy global environmental model, Oceanography, 27, 116–125,
https://doi.org/10.5670/oceanog.2014.73, 2014.
Holt, L., Randall, C. E., Peck, E. D., Marsh, D. R., Smith, A. K., and Harvey, V. L.: The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic
particle precipitation in WACCM, J. Geophys. Res., 118, 636–646, 2013.
Hoppel, K. W., Eckermann, S. D., Coy, L., Nedoluha, G. E., and Allen, D. R.:
Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation,
Mon. Weather Rev., 141, 3314, https://doi.org/10.1175/MWR-D-13-00003.1, 2013.
Jones, M., Siskind, D. E., Drob, D. P., McCormack, J. P., Emmert, J. T.,
Dhadly, M. S., Attard, H. E., Mlynczak, M. G., Brown, P. G., Stober, G.,
Kozlovsky, A., Lester, M., and Jacobi, C.: Coupling from the middle atmosphere to the exobase: Dynamical disturbance
effects on light chemical species, J. Geophys. Res., 125, e2020JA028331, https://doi.org/10.1029/2020JA028331, 2020.
Langematz, U. and Tully, M. B., Calvo, N., Dameris, M. de Laat, A. T. J., Klekociuk, A.,
Muller, R., and Young, P.: Polar Stratospheric Ozone: Past, Present and Future, Chapter 4 in
Scientific Assessment of Ozone Depletion, 2018, Global
Ozone Research and Monitoring Project-Report No. 58, Geneva Switzerland, 588 pp., 2018.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the composite response of the MLT to major sudden stratospheric warming events with elevated
stratopause, J. Geophys. Res., 121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
Manney, G. L., Zurek, R. W., O'Neill, A., and Swinbank, R.: On the motion of
air through the stratospheric polar vortex, J. Atmos. Sci., 51, 2973–2994, 1994.
Manney, G. L., Kruger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The remarkable 2003-04
winter and other recent warm winters in the Arctic stratosphere since the late 1990's,
J. Geophys. Res., 110, D04107, https://doi.org/10.1029/2004JD005367, 2005.
Manney, G. L., Daffer, W. H., Strawbridge, K. B., Walker, K. A., Boone, C.
D., Bernath, P. F., Kerzenmacher, T., Schwartz, M. J., Strong, K., Sica, R.
J., Krüger, K., Pumphrey, H. C., Lambert, A., Santee, M. L., Livesey, N.
J., Remsberg, E. E., Mlynczak, M. G., and Russell III, J. R.: The high Arctic
in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas
evolution, Atmos. Chem. Phys., 8, 505–522, https://doi.org/10.5194/acp-8-505-2008,
2008.
Manney, G. L., Harwood, R. S., MacKenzie, I. A., Minschwaner, K., Allen, D. R., Santee, M. L., Walker, K. A., Hegglin, M. I., Lambert, A., Pumphrey, H. C., Bernath, P. F., Boone, C. D., Schwartz, M. J., Livesey, N. J., Daffer, W. H., and Fuller, R. A.: Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming, Atmos. Chem. Phys., 9, 4775–4795, https://doi.org/10.5194/acp-9-4775-2009, 2009a.
Manney, G. L., Schwartz, M. J., Kruger, K., Santee, M. L, Pawson, S., Lee, J. N., Daffer, W. H.,
Fuller, R. A., and Livesey, N. J.:
Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric
major warming, Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009GL038586, 2009b.
Meraner, K., Schmidt H., Manzini, E., Funke, B., and Gardini, A.:
Sensitivity of simulated mesospheric transport of nitric oxides to parameterized gravity waves, J. Geophys. Res., 12045–12061,
https://doi.org/10.1002/2016JD025012., 2016.
McClandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C., and Manney, G. L.: Dynamical control of the mesosphere by orographic and non-orographic wave drag during the extended
northern winters of 2006 and 2009, J. Atmos. Sci., 70, 2152–2169, https://doi.org/10.1175/JAS-D-12-0297.1, 2013.
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., Baker, N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N., Ruston, B., Swadley, S.,
Viner, K., Whitcomb, T., and Hibbins, R.:
Comparison of mesospheric winds from a high-altitude meteorological
analysis system and meteor radar observations during the boreal winters of 2009-2010 and 2012-2013,
J. Atmos. Sol.-Terr. Phy., 154, 132–166, https://doi.org/10.1016/j.jastp.2016.12.007,
2017.
Mcdonald, S. E., Sassi, F., Tate, J., McCormack, J. P., Kuhl, D. D., Drob, D. P., Metzler, C., and
Mannucci, A. J.: Impact of non-migrating tides on the low latitude ionosphere during a
sudden stratospheric warming event in January 2010,
J. Atmos. Sol.-Terr. Phy., 171, 188–200, https://doi.org/10.1016/j.jastp.2017.09.012, 2018.
Minschwaner, K. and Siskind, D. E.: A new calculation of nitric-oxide photolysis in the stratosphere,
mesosphere, and lower thermosphere, J. Geophys. Res., 98, 20401–20412, https://https://doi.org/10.1029/93JD02007,
1993.
Natarajan, M., Remsberg, E. E., Deaver, L., and Russell III, J. M.:
Anomalously high levels of NOx in the polar upper stratosphere during April, 2004: Photochemical
consistency of HALOE observations, Geophys. Res. Lett., 31, L15115, https://doi.org/10.1029/2004GL020566., 2004.
NCAR: Access to WACCM, available at: https://www2.acom.ucar.edu/gcm/waccm, NCAR, [code], last access: 26 August 2021.
Orsolini, Y. J., Limpasuvan, V., Perot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R., and Murtagh, D.:
Modeling the descent of nitric oxide during the elevated stratopause event of January 2013,
J. Atmos. Sol.-Terr. Phy., 155, 50–61, https://doi.org/10.1016/j.jastp.2017.01.006,
2017.
Päivärinta, S.-M., Verronen, P. T., Funke, B., Gardini, A., Seppälä, A., and Andersson, M. E.:
Transport versus energetic particle precipitation: Northern polar stratospheric NOx and ozone in
January-March 2012, J. Geophys. Res., 121, 6085–6100, https://doi.org/10.1002/2015JD024217, 2016.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L., Chau, J. L., Goncharenko, L. P.,
and Siddiqui, T. A.:
Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART,
J. Geophys. Res., 123, 3131–3153, https://doi.org/10.1002/2017JA025107, 2018.
Perot, K. and Orsolini, Y. J.: Impact of the major SSWs of February 2018 and January 2019 on the
middle atmospheric nitric oxide abundance, J. Atmos. Sol.-Terr. Phy., 218, 105586,
https://doi.org/10.1016/j.jastp.2021.105586, 2021.
Pérot, K., Urban, J., and Murtagh, D. P.: Unusually strong nitric oxide descent in the Arctic middle atmosphere in early 2013 as observed by Odin/SMR, Atmos. Chem. Phys., 14, 8009–8015, https://doi.org/10.5194/acp-14-8009-2014, 2014.
Pettit, J. M., Randall, C. E., Peck, E. D., Marsh, D. R., van de Kamp, M., Fang, X., Harvey, V. L., Rodger, C. J., and
Funke, B.: Atmospheric efffects of > 30-keV energetic electron precipitation in the Southern Hemisphere winter during
2003, J. Geophys. Res., 124, : 5747–5763, https://doii.org/10.1029/2019JA026868, 2019.
Randall, C. E., Rusch, D. W., Bevilacqua, R. M., Hoppel, K. W., and Lumpe, J. D.:
Polar Ozone and Aerosol Measurement (POAM) II stratospheric NO2, 1993-1996,
J. Geophys. Res., 103, 28361–38371, 1998.
Randall, C. E., Siskind, D. E., and Bevilacqua, R. M.: Stratospheric NOx enhancements
in the southern hemisphere vortex in winter/spring of 2000, Geophys. Res.
Lett., 28, 2385–2388, 2001.
Randall, C. E., Lumpe, J. D., Bevilacqua, R. M., Hoppel, K. W., Fromm, M. D., Salawitch, R. J.,
Swartz, W. H., Lloyd, S. A., Kyro, E., von der Gathen, P., Claude, H., Davies, J., DeBacker H., Dier, H., Molyneux, M. J., and
Sancho, J.: Reconstruction of three-dimensional ozone fields using POAM III during SOLVE, J. Geophys. Res., 107, 8299,
https://doi.org/10.1029/2001JD000471., 2002.
Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris, C., Brohede, S.,
Haley, C. S., Gordley, L. L., Zawodny, J. M., and Russell III, J. M.: Stratospheric effects
of energetic particle precipitation in 2003-2004, Geophys. Res. Lett., 32, L05802,
https://doi.org/10.1029/2004GL022003, 2005a.
Randall, C. E., Manney, G. L., Allen, D. R., Bevilacqua, R. M., Hornstein, J.,
Trepte, C., Lahoz, W., Ajtic, J. V., and Bodeker, G.: Reconstruction and simulation of stratospheric ozone
distributions during the 2002 Austral winter, J. Atmos. Sci., 62., 748–764, https://doi.org/10.1175/JAS-3336.1, 2005b.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bernath, P. F., Boone, C. D., and Kozyra, J. U.:
Enhanced NOx in 2006 linked to strong Arctic stratospheric vortex,
Geophys. Res. Lett., 33, L18811, https://doi.org/10.1029/2006GL027160, 2006.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and
Russell III, J. M.: Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992-2005,
J. Geophys. Res., 112, D08308, https://doi.org/10.1029/2006JD07696, 2007.
Randall, C. E., Harvey, V. L., Siskind, D. E., France, J., Bernath, P. F., Boone, C. D., and Walker, K. A.:
NOx descent in the Arctic middle atmosphere in early 2009,
Geophys. Res. Lett., 36, L18811, https://doi.org/10.1029/2009GL039706, 2009.
Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke B., and Bernath, P. F.:
Simulations of energetic particle precipitation effects during the 2003-2004 Arctic winter, J. Geophys. Res., 5035–5048, https://doi.org/10.1002/2015JA021196, 2015.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D, Lingenfelser, G. S., Martin-Torres, J.,
Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, J. J.,
Lopez-Puertas, M., She, C. Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the version 1.07
temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101,
https://doi.org/10.1029/2008JD010013, 2008.
Rezac, A., Kutepov, A., Russell III, J. M., Feofilov, A. G., amd Yue, J.: Simultaneous retrieval of T(p)
and CO2 VMR from two channel non-LTE limb radiances and application to daytime SABER/TIMED
measurements, J. Atmos. Sol.-Terr. Phy., 130, 23–42, https://doi.org/10.1016/j.jastp.2015.05.004, 2015.
Rinsland, C. P., Salawitch, R. J., Gunson, M. R., Solomon, S., Zander, R., Mahieu, E.,
Goldman, A., Newchurch, M. J., Irion, F. W., and Chang, A. Y.: Polar stratospheric descent of NOy and CO and Arctic denitrification during winter 1992-1993, J. Geophys. Res., 104, 1847–1861, 1999.
Russell III, J. M., Solomon, S., Gordley, L. L., Remsberg, E. E., and Callis, L. B.:
The variability of stratospheric and mesospheric NO2 in the polar night winter observed by
LIMS, J. Geophys. Res., 89, 7267–7275, 1984.
Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., and Seppälä, A.: Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming, Atmos. Chem. Phys., 11, 4645–4655, https://doi.org/10.5194/acp-11-4645-2011, 2011.
Sassi, F., and Liu, H.-L., Ma, J., and Garcia, R. R.: The lower thermosphere during the northern winter of 2009: A modeling study using high-altitude data assimilation products in WACCMX, J. Geophys. Res., 118, 8954–8968,
https://doi.org/10.1002/jgrd.50632, 2013.
Sassi, F., Siskind, D. E., Tate, J. L., Liu, H.-L., and Randall, C. E.: Simulations of the boreal
winter upper mesosphere and lower thermosphere with meteorological specifications in
SD-WACCM-X, J. Geophys. Res., 123, 3791–3811, https://doi.org/10.1002/2017JD027782., 2018.
Sassi, F., McCormack, J. P., Tate, J. L., Kuhl, D. D., and Baker, N. L.: Assessing the
impact of middle atmosphere observations on day-to-day variability in lower thermospheric winds using
WACCMX, J. Atmos. Sol.-Terr. Phy., 212, https://doi.org/10.1016/j.jastp.2020.105486, 2021.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L.,
Ao, C. O., Bernath, P. F., Booned, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J.,
Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Kruger, K.,
Li, J.-L., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and
Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature
and geopotential height
measurements, J. Geophys. Res., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and Rodger, C. J.:
Geomagnetic activity and polar surface air temperature variablity,
J. Geophys. Res., 14, A10312, https://doi.org/10.1029/2008JA014029, 2009.
Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM, Ann. Geophys., 32, 589–608, https://doi.org/10.5194/angeo-32-589-2014, 2014.
Sinnhuber, M., Friedrich, F., and Bender, S.: The response of mesospheric NO to geomagnetic
forcing in 2002-2012 as seen by SCIAMACHY, J. Geophys. Res., 121, 3603–3620,
https://doi.org/10.1002/2015JA022284, 2016.
Siskind. D. E., Barth, C. A., Evans, D. S., and Roble, R. G.:
The response of thermospheric nitric oxide to an auroral storm 2. Auroral latitudes,
J. Geophys. Res., 94, 16899–16911, 1989.
Siskind, D. E., Barth, C. A., and Cleary, D. D.:
The possible effect of solar soft X rays on thermospheric nitric oxide, J.
Geophys. Res., 95, 4311–4317, 1990.
Siskind, D. E. and Russell III, J. M.: Coupling between middle and upper atmospheric
NO: Constraints from HALOE observations, Geophys. Res. Lett., 23, 137–140, 1996.
Siskind, D. E., Nedoluha, G. E., Randall, C. E., Fromm, M., and Russell III, J. M.:
An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from
the upper atmosphere, Geophys. Res. Lett., 27, 329–332, https://doi.org/10.1029/1999GL010940, 2000.
Siskind, D. E., Eckermann, S. D., Coy, L., McCormack, J. P., and Randall, C. E.:
On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent,
Geophys. Res. Lett., 34, L09806, https://doi.org/10.1029/2007GL029293, 2007.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W., and Baker, N. L.:
Case studies of the mesospheric response to minor, major and extended
stratospheric warmings, J. Geophys. Res., 115, D00N03, https://doi.org/10.1029/2010JD014114, 2010.
Siskind, D. E., Sassi, F., Randall, C. E., Harvey, V. L., Hervig, M. E., and Bailey, S. M.: Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere
coupling?, Geophys. Res. Lett., 42, 8225–8230, doi.10.1002/2015GL065838, 2015.
Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H.:
WACCM simulations of the mean circulation and trace species transport in the
winter mesosphere, J. Geophys. Res., 116, D20115, https://doi.org/10.1029/2011JD016083, 2011.
Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 32, 1177–1230,
https://doi.org/10.1007/s10712-012-9196-9, 2012.
SOFIE: SOFIE Database, Level 2 Data Access, [data set] available at: https://sofie.gats-inc.com, last access: 26 August 2021.
Solomon, S., Crutzen, P. J., and Roble, R. G.: Photochemical coupling between the thermosphere and the lower atmosphere 1. Odd nitrogen between 50 to 120 km,
J. Geophys. Res., 87, 7206–7220, 1982.
Stober, G., Baumgarten, K., McCormack, J. P., Brown, P., and Czarnecki, J.: Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region, Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, 2020.
Straub, C., Tschanz, B., Hocke, K., Kämpfer, N., and Smith, A. K.: Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation, Atmos. Chem. Phys., 12, 5413–5427, https://doi.org/10.5194/acp-12-5413-2012, 2012.
Swadley, S. D., Poe, G. A., Bell, W., Hong, Y., Kunkee, D. B., McDermid, I. S., and Leblanc, T.:
Analysis and characterization of the SSMIS upper atmosphere sounding channel measurement, IEEE T. Geosci. Remote, 46, 962–983, https://doi.org/10.1109/TGFS.2008.916980, 2008.
US Naval Research Laboratory: Publically Accessible Data Downloads, [data set], available at: https://map.nrl.navy.mil/map/pub/nrl/jgrspace2020/lightspecies/navgem, last access: 26 August 2021.
Winick, J. R., Wintersteiner, P. P., Picard, R. H., Esplin, D., Mlynczak, M. G., Russell III, J. M., and Gordley, L. L.: OH layer characteristics during unusual boreal winters of 2004 and 2006, J. Geophys. Res., 114, A02303, https://doi.org/10.1029/2008JA013688, 2009.
Short summary
General circulation models have had a very difficult time simulating the descent of nitric oxide through the polar mesosphere to the stratosphere. Here, we present results suggesting that, with the proper specification of middle atmospheric meteorology, the simulation of this process can be greatly improved. Despite differences in the detailed geographic morphology of the model NO as compared with satellite data, we show that the overall abundance is likely in good agreement with the data.
General circulation models have had a very difficult time simulating the descent of nitric oxide...
Altmetrics
Final-revised paper
Preprint