Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14059-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause event
David E. Siskind
CORRESPONDING AUTHOR
Space Science Division, Naval Research Laboratory, Washington DC, USA
V. Lynn Harvey
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Fabrizio Sassi
Space Science Division, Naval Research Laboratory, Washington DC, USA
John P. McCormack
Space Science Division, Naval Research Laboratory, Washington DC, USA
now at: Heliophysics Division, National Aeronautics and Space Administration, Washington DC, USA
Cora E. Randall
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder CO, USA
Mark E. Hervig
GATS Inc., Driggs ID, USA
Scott M. Bailey
Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, USA
Related authors
Mark E. Hervig, Benjamin T. Marshall, Scott M. Bailey, David E. Siskind, James M. Russell III, Charles G. Bardeen, Kaley A. Walker, and Bernd Funke
Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, https://doi.org/10.5194/amt-12-3111-2019, 2019
Short summary
Short summary
The Solar Occultation for Ice Experiment (SOFIE) has measured nitric oxide (NO) from satellite since 2007. The observations are validated through error analysis and comparisons with other satellite observations. Calculated SOFIE NO uncertainties are less than 50 % for altitudes from 40 to 140 km. SOFIE agrees with other measurements to within 50 % for altitudes from roughly 50 to 105 km for spacecraft sunrise and 50 to 140 km for sunsets.
David E. Siskind, McArthur Jones Jr., Douglas P. Drob, John P. McCormack, Mark E. Hervig, Daniel R. Marsh, Martin G. Mlynczak, Scott M. Bailey, Astrid Maute, and Nicholas J. Mitchell
Ann. Geophys., 37, 37–48, https://doi.org/10.5194/angeo-37-37-2019, https://doi.org/10.5194/angeo-37-37-2019, 2019
Short summary
Short summary
We use data from two NASA satellites and a general circulation model of the upper atmosphere to elucidate the key factors governing the abundance and diurnal variation of nitric oxide (NO) at near-solar minimum conditions and low latitudes. This has been difficult to do previously, because NO data are typically taken from satellites in sun-synchronous orbits, meaning that they only acquire data in fixed local times. We overcome this limitation through model simulations of the NO diurnal cycle.
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018, https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
Short summary
There is a massive manifestation of atmospheric gravity waves (GWs) in polar mesospheric clouds (PMCs) at the summer mesopause, which serves as indicators of the atmospheric dynamics and climate change. We obtained a universal power law that governs the GW display morphology and clarity level throughout the wave population residing in PMCs. Higher clarity refers to more distinct exhibition of the features. A GW tracking algorithm is used to identify the waves and to sort the albedo power.
David E. Siskind, Gerald E. Nedoluha, Fabrizio Sassi, Pingping Rong, Scott M. Bailey, Mark E. Hervig, and Cora E. Randall
Atmos. Chem. Phys., 16, 7957–7967, https://doi.org/10.5194/acp-16-7957-2016, https://doi.org/10.5194/acp-16-7957-2016, 2016
Short summary
Short summary
The strong descent of wintertime mesospheric air into the stratosphere has been of great recent interest. Here, we show that because mesospheric air is depleted in methane, it implies that chlorine will be found more in its active form, chlorine monoxide. This is a new way for mesosphere/stratosphere coupling to affect ozone. Second, these effects seem to persist longer than previously thought. Studies of the summer upper stratosphere should consider the conditions from the previous winter.
G. E. Nedoluha, D. E. Siskind, A. Lambert, and C. Boone
Atmos. Chem. Phys., 15, 4215–4224, https://doi.org/10.5194/acp-15-4215-2015, https://doi.org/10.5194/acp-15-4215-2015, 2015
Short summary
Short summary
While global stratospheric O3 has begun to recover, there are localized regions where O3 has decreased since 1991. O3 in the mid-stratosphere is very sensitive to nitrogen chemistry, with increased NOy resulting in decreased O3. We show how the observed O3 changes in the tropical mid-stratosphere can be caused by long-term variations in dynamics. These variations result in a decrease in N2O, an increase in NOy, and a resulting decrease in O3.
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Ellis Remsberg, V. Lynn Harvey, Arlin Krueger, Larry Gordley, John C. Gille, and James M. Russell III
Atmos. Chem. Phys., 20, 3663–3668, https://doi.org/10.5194/acp-20-3663-2020, https://doi.org/10.5194/acp-20-3663-2020, 2020
Short summary
Short summary
The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. This note focuses on the lower stratosphere of the southern hemisphere, subpolar regions in relation to the position of the polar vortex. Both LIMS ozone and nitric acid show reductions within the edge of the polar vortex at 46 hPa near 60° S from late October through mid-November 1978, indicating that there was a chemical loss of Antarctic ozone some weeks earlier.
Lina Broman, Susanne Benze, Jörg Gumbel, Ole Martin Christensen, and Cora E. Randall
Atmos. Chem. Phys., 19, 12455–12475, https://doi.org/10.5194/acp-19-12455-2019, https://doi.org/10.5194/acp-19-12455-2019, 2019
Short summary
Short summary
Combining satellite observations of polar mesospheric clouds are complicated due to satellite geometry and measurement technique. In this study, tomographic limb observations are compared to observations from a nadir-viewing satellite using a common volume approach. We present a technique that overcomes differences in scattering conditions and observation geometry. The satellites show excellent agreement, which lays the basis for future insights into horizontal and vertical cloud processes.
Mark E. Hervig, Benjamin T. Marshall, Scott M. Bailey, David E. Siskind, James M. Russell III, Charles G. Bardeen, Kaley A. Walker, and Bernd Funke
Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, https://doi.org/10.5194/amt-12-3111-2019, 2019
Short summary
Short summary
The Solar Occultation for Ice Experiment (SOFIE) has measured nitric oxide (NO) from satellite since 2007. The observations are validated through error analysis and comparisons with other satellite observations. Calculated SOFIE NO uncertainties are less than 50 % for altitudes from 40 to 140 km. SOFIE agrees with other measurements to within 50 % for altitudes from roughly 50 to 105 km for spacecraft sunrise and 50 to 140 km for sunsets.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall
Atmos. Meas. Tech., 12, 1755–1766, https://doi.org/10.5194/amt-12-1755-2019, https://doi.org/10.5194/amt-12-1755-2019, 2019
Short summary
Short summary
Polar mesospheric clouds are an upper atmospheric phenomenon of great interest in that they provide information about a previously inaccessible atmospheric region, the coldest of the planet. This paper provides the basis for converting raw radiance measurements of clouds, made by diverse satellite instrumentation, into a physically based quantity, the cloud ice water content. The new algorithm allows intercomparisons of data collected using diverse optical methods.
David E. Siskind, McArthur Jones Jr., Douglas P. Drob, John P. McCormack, Mark E. Hervig, Daniel R. Marsh, Martin G. Mlynczak, Scott M. Bailey, Astrid Maute, and Nicholas J. Mitchell
Ann. Geophys., 37, 37–48, https://doi.org/10.5194/angeo-37-37-2019, https://doi.org/10.5194/angeo-37-37-2019, 2019
Short summary
Short summary
We use data from two NASA satellites and a general circulation model of the upper atmosphere to elucidate the key factors governing the abundance and diurnal variation of nitric oxide (NO) at near-solar minimum conditions and low latitudes. This has been difficult to do previously, because NO data are typically taken from satellites in sun-synchronous orbits, meaning that they only acquire data in fixed local times. We overcome this limitation through model simulations of the NO diurnal cycle.
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018, https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
Short summary
There is a massive manifestation of atmospheric gravity waves (GWs) in polar mesospheric clouds (PMCs) at the summer mesopause, which serves as indicators of the atmospheric dynamics and climate change. We obtained a universal power law that governs the GW display morphology and clarity level throughout the wave population residing in PMCs. Higher clarity refers to more distinct exhibition of the features. A GW tracking algorithm is used to identify the waves and to sort the albedo power.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Ellis Remsberg and V. Lynn Harvey
Atmos. Meas. Tech., 9, 2927–2946, https://doi.org/10.5194/amt-9-2927-2016, https://doi.org/10.5194/amt-9-2927-2016, 2016
Short summary
Short summary
Emissions from polar stratospheric cloud (PSC) particles affect the retrieved ozone and water vapor from the Limb Infrared Monitor of the Stratosphere (LIMS) satellite experiment. Threshold criteria are applied to the retrieved ozone for the detection and screening of those effects. The PSC effects correlate very well with regions of coldest temperatures (< 194 K) within the polar vortex. Retrieved nitric acid vapor is affected much less, and there is evidence of its uptake in regions of PSCs.
David E. Siskind, Gerald E. Nedoluha, Fabrizio Sassi, Pingping Rong, Scott M. Bailey, Mark E. Hervig, and Cora E. Randall
Atmos. Chem. Phys., 16, 7957–7967, https://doi.org/10.5194/acp-16-7957-2016, https://doi.org/10.5194/acp-16-7957-2016, 2016
Short summary
Short summary
The strong descent of wintertime mesospheric air into the stratosphere has been of great recent interest. Here, we show that because mesospheric air is depleted in methane, it implies that chlorine will be found more in its active form, chlorine monoxide. This is a new way for mesosphere/stratosphere coupling to affect ozone. Second, these effects seem to persist longer than previously thought. Studies of the summer upper stratosphere should consider the conditions from the previous winter.
Johannes Plieninger, Alexandra Laeng, Stefan Lossow, Thomas von Clarmann, Gabriele P. Stiller, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Kaley A. Walker, Stefan Noël, Mark E. Hervig, Martin McHugh, Alyn Lambert, Joachim Urban, James W. Elkins, and Donal Murtagh
Atmos. Meas. Tech., 9, 765–779, https://doi.org/10.5194/amt-9-765-2016, https://doi.org/10.5194/amt-9-765-2016, 2016
Short summary
Short summary
We compare concentration profiles of methane and nitrous oxide measured from MIPAS-ENVISAT and derived with a new retrieval setup to those measured by other satellite instruments and to surface measurements. For methane we use profiles measured by ACE-FTS, HALOE and SCIAMACHY; for nitrous oxide we use profiles measured by ACE-FTS, Aura-MLS and Odin-SMR for the comparisons. We give a quantitative bias estimation and compare the estimated errors provided by the instruments.
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
G. E. Nedoluha, D. E. Siskind, A. Lambert, and C. Boone
Atmos. Chem. Phys., 15, 4215–4224, https://doi.org/10.5194/acp-15-4215-2015, https://doi.org/10.5194/acp-15-4215-2015, 2015
Short summary
Short summary
While global stratospheric O3 has begun to recover, there are localized regions where O3 has decreased since 1991. O3 in the mid-stratosphere is very sensitive to nitrogen chemistry, with increased NOy resulting in decreased O3. We show how the observed O3 changes in the tropical mid-stratosphere can be caused by long-term variations in dynamics. These variations result in a decrease in N2O, an increase in NOy, and a resulting decrease in O3.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
P. E. Sheese, K. Strong, E. J. Llewellyn, R. L. Gattinger, J. M. Russell III, C. D. Boone, M. E. Hervig, R. J. Sica, and J. Bandoro
Atmos. Meas. Tech., 5, 2993–3006, https://doi.org/10.5194/amt-5-2993-2012, https://doi.org/10.5194/amt-5-2993-2012, 2012
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
An empirical model of nitric oxide in the upper mesosphere and lower thermosphere based on 12 years of Odin SMR measurements
Daytime ozone and temperature variations in the mesosphere: a comparison between SABER observations and HAMMONIA model
Joonas Kiviranta, Kristell Pérot, Patrick Eriksson, and Donal Murtagh
Atmos. Chem. Phys., 18, 13393–13410, https://doi.org/10.5194/acp-18-13393-2018, https://doi.org/10.5194/acp-18-13393-2018, 2018
Short summary
Short summary
This paper investigates how the activity of the Sun affects the amount of nitric oxide (NO) in the upper atmosphere. If NO descends lower down in the atmosphere, it can destroy ozone. We analyze satellite measurements of NO to create a model that can simulate the amount of NO at any given time. This model can indeed simulate NO with reasonable accuracy and it can potentially be used as an input for a larger model of the atmosphere that attempts to explain how the Sun affects our atmosphere.
S. Dikty, H. Schmidt, M. Weber, C. von Savigny, and M. G. Mlynczak
Atmos. Chem. Phys., 10, 8331–8339, https://doi.org/10.5194/acp-10-8331-2010, https://doi.org/10.5194/acp-10-8331-2010, 2010
Cited articles
ACE/SCISAT: ACE/SCISAT Database, Level 2 Data Access, [data set], available at: https://databace.scisat.ca/l2signup.php, last access: 26 August 2021.
Andersson, M. E., Verronen, P. T., Marsh, D. R., Paivarinta, S.-M., and Plane, J. M. C.:
WACCM-D Improved modeling of nitric acid and
active chlorine during energetic particle precipitation, J. Geophys. Res., 121, 10328–10341,
https://doi.org/10.1002/2015JD024173, 2016.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, vol 40 Int'l Geophys Series, 489 pp., 1987.
Bailey, S. M., Thurairajah, B., Randall, C. E., Holt, L., Siskind, D. E., Harvey, V. L., Venkataramani, K.,
Hervig, M. E., Rong, P. P., and
Russell, J. M.: A multi tracer analysis of thermosphere to stratosphere descent triggered by the 2013 stratospheric sudden warming, Geophys. Res. Lett., 41, 5216–5222, https://doi.org/10.1002/2014GL059860, 2014.
Barth, C. A., Tobiska, W. E., Siskind, D. E., and Cleary, D. D.: Solar-terrestrial coupling: Low-latitude thermospheric nitric oxide, Geophys. Res. Lett., 15, 92–94, 1988.
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C.,
Coheur, P.-F., Colin,R., DeCola, P., DeMaziere, M., Drummond, J. R., Dufour, D., Eveans, W. F. J., Fast, H., Fussen, D., Gilbert, K.,
Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell., J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C.,
Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J.,
Souch, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.:
Atmospheric chemistry experiment (ACE): mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Chandran, A., Collins, R. L., Garcia, R. R., and Marsh, D. R.:
A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model,
Geophys. Res. Lett., 38, L08804, https://doi.org/10.1029/2010GL046566, 2011.
Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., and de la Torre, L.: A climatology of elevated stratopause events in the whole atmosphere community climate model,
J. Geophys. Res., 118, 1234–1246, https://doi.org/10.1002/jgrd.50123, 2013.
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and Niciejewski, R.:
Short-term and interannual variations of migrating diurnal and semidiurnal tides in the mesosphere
and lower thermosphere, J. Geophys. Res., 123, 7106–7123,
https://doi.org/10.1029/2018JA025748, 2018.
Duderstadt, K. A., Huang, C.-L., Spence, H. E., Smith, S., Blake, J. B., Crew, A. B., Johnson, A. T., Klumpar, D. M., Marsh, D. R., Sample, J. G., Shumko, M., and Vitt, F. M.: Estimating the impacts of
radiation belt electrons on atmospheric chemistry using FIREBIRD II and Van Allen Probes observations,
J. Geophys. Res., 126, e2020JD033098, https://doi.org/10.1029/2020JD033098, 2021.
Eckermann, S. D., Ma, J., Hoppel, K. W., Kuhl, D. D., Allen, D. R., Doyle, J. A., Viner, K. C., Ruston, B. C.,
Baker, N. L., Swadley, S. D., Whitcomb, T. R., Reynolds, C. A., Xu, L., Kaifler, N., Kaifler, B., Reid, I. M.,
Murphy, D. J., and Love, P. T.: High altitude (0-100 km) global reanalysis system: Description
and application to the 2014 Austral Winter of the Deep Propagating Gravity Wave
Experiment (DEEPWAVE), Mon. Weather Rev., 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1, 2018.
Funke, B., Lopez-Puertas, M., Gil-Lopez, S., von Clarmann, T., Stiller, G. P., Fischer, H.,
and Kellman, S.: Downward transport of upper atmospheric NOx into the polar stratosphere and lower
mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters, J. Geophys. Res, 110, D24308,
https://doi.org/10.1029/2005JD006463, 2005.
Funke, B., Lopez-Puertas, M., Holt, L., Randall, C. E., Stiller, G. P., and von Clarmann, T.: Hemispheric
distributions and interannual variability of NOy produced by energetic particle precipation in 2002-2012,
J. Geophys. Res., 119, 13565–13582, https://doi.org/10.1002/2014JD022423., 2014a.
Funke, B., Puertas, M.-L., Stiller, G. P., and von Clarmann, T.: Mesospheric and stratospheric
NOy produced by energetic particle precipitation during 2002-2012, J. Geophys. Res., 199
4429–4446, https://doi.org/10.1002/2013JD021404, 2014b.
Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V. L., Lambert, A., López-Puertas, M., Marsh, D. R., Meraner, K., Nieder, H., Päivärinta, S.-M., Pérot, K., Randall, C. E., Reddmann, T., Rozanov, E., Schmidt, H., Seppälä, A., Sinnhuber, M., Sukhodolov, T., Stiller, G. P., Tsvetkova, N. D., Verronen, P. T., Versick, S., von Clarmann, T., Walker, K. A., and Yushkov, V.: HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009, Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, 2017.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Moloid, A., Takacs, L., Randles, C. A.,
Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C.,
Akella, S., Buchard, V., Conaty, A., Da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerard, J. C. and Barth, C. A.: High latitude nitric oxide in the lower thermosphere, J. Geophys.
Res., 82, 674–680, 1977.
Gordon, E. M., Seppälä, A., and Tamminen, J.: Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations, Atmos. Chem. Phys., 20, 6259–6271, https://doi.org/10.5194/acp-20-6259-2020, 2020.
Harvey, V. L., Pierce, R. B., Fairlie, T. D., and Hitchman, M. H.: A climatology of
stratospheric polar vortices and anticyclones, J. Geophys. Res., 107, 4442,
https://doi.org/10.1029/2001JD001471, 2002.
Harvey, V. L., Randall, C. E., and Hitchman, M. H.: Breakdown of potential vorticity-based equivalent latitude
as a vortex-centered coordinate in the polar winter mesosphere, J. Geophys. Res., 114, D22015,
https://doi.org/10.1029/2009JD012681, 2009.
Harvey, V. L., Datta-Barua S., Wang, N., Pedatella, N. M., Randall, C. E., Siskind, D. E., and
Van Caspel, W. E.: NO transport via lagrangian coherent sructures into the top of the polar vortex,
J. Geophys. Res., 126, e2020JD034523, https://doi.org/10.1029/2020JD034523, 2021.
Hauchecorne, A., Bertoux, J.-L., Dalaudier, F., Russell, J. M., Mlynczak, M. G., Kyrola, E.,
and Fussen, D.: Large increase of NO2 in the north polar mesosphere in January-February 2004:
Evidence for a dynamical origin from GOMOS, ENVISAT and SABER/TIMED data, Geophys. Res. Lett., 34, L03810,
https://doi.org/10.1029/2006GL027628, 2007.
Hendrickx, K., Megner, L., Marsh, D. R., and Smith-Johnsen, C.: Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models, Atmos. Chem. Phys., 18, 9075–9089, https://doi.org/10.5194/acp-18-9075-2018, 2018.
Hervig, M. E., Marshall, B. T., Bailey, S. M., Siskind, D. E., Russell III, J. M., Bardeen, C. G., Walker, K. A., and Funke, B.: Validation of Solar Occultation for Ice Experiment (SOFIE) nitric oxide measurements, Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, 2019.
Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., Baker, N. L., McCormack, J. P., Viner, K. C., McLay, J. G., Flatau, M. K., Xu, L., Chen, C.,
and Chang, S. W.: The navy global environmental model, Oceanography, 27, 116–125,
https://doi.org/10.5670/oceanog.2014.73, 2014.
Holt, L., Randall, C. E., Peck, E. D., Marsh, D. R., Smith, A. K., and Harvey, V. L.: The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic
particle precipitation in WACCM, J. Geophys. Res., 118, 636–646, 2013.
Hoppel, K. W., Eckermann, S. D., Coy, L., Nedoluha, G. E., and Allen, D. R.:
Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation,
Mon. Weather Rev., 141, 3314, https://doi.org/10.1175/MWR-D-13-00003.1, 2013.
Jones, M., Siskind, D. E., Drob, D. P., McCormack, J. P., Emmert, J. T.,
Dhadly, M. S., Attard, H. E., Mlynczak, M. G., Brown, P. G., Stober, G.,
Kozlovsky, A., Lester, M., and Jacobi, C.: Coupling from the middle atmosphere to the exobase: Dynamical disturbance
effects on light chemical species, J. Geophys. Res., 125, e2020JA028331, https://doi.org/10.1029/2020JA028331, 2020.
Langematz, U. and Tully, M. B., Calvo, N., Dameris, M. de Laat, A. T. J., Klekociuk, A.,
Muller, R., and Young, P.: Polar Stratospheric Ozone: Past, Present and Future, Chapter 4 in
Scientific Assessment of Ozone Depletion, 2018, Global
Ozone Research and Monitoring Project-Report No. 58, Geneva Switzerland, 588 pp., 2018.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the composite response of the MLT to major sudden stratospheric warming events with elevated
stratopause, J. Geophys. Res., 121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
Manney, G. L., Zurek, R. W., O'Neill, A., and Swinbank, R.: On the motion of
air through the stratospheric polar vortex, J. Atmos. Sci., 51, 2973–2994, 1994.
Manney, G. L., Kruger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The remarkable 2003-04
winter and other recent warm winters in the Arctic stratosphere since the late 1990's,
J. Geophys. Res., 110, D04107, https://doi.org/10.1029/2004JD005367, 2005.
Manney, G. L., Daffer, W. H., Strawbridge, K. B., Walker, K. A., Boone, C.
D., Bernath, P. F., Kerzenmacher, T., Schwartz, M. J., Strong, K., Sica, R.
J., Krüger, K., Pumphrey, H. C., Lambert, A., Santee, M. L., Livesey, N.
J., Remsberg, E. E., Mlynczak, M. G., and Russell III, J. R.: The high Arctic
in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas
evolution, Atmos. Chem. Phys., 8, 505–522, https://doi.org/10.5194/acp-8-505-2008,
2008.
Manney, G. L., Harwood, R. S., MacKenzie, I. A., Minschwaner, K., Allen, D. R., Santee, M. L., Walker, K. A., Hegglin, M. I., Lambert, A., Pumphrey, H. C., Bernath, P. F., Boone, C. D., Schwartz, M. J., Livesey, N. J., Daffer, W. H., and Fuller, R. A.: Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming, Atmos. Chem. Phys., 9, 4775–4795, https://doi.org/10.5194/acp-9-4775-2009, 2009a.
Manney, G. L., Schwartz, M. J., Kruger, K., Santee, M. L, Pawson, S., Lee, J. N., Daffer, W. H.,
Fuller, R. A., and Livesey, N. J.:
Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric
major warming, Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009GL038586, 2009b.
Meraner, K., Schmidt H., Manzini, E., Funke, B., and Gardini, A.:
Sensitivity of simulated mesospheric transport of nitric oxides to parameterized gravity waves, J. Geophys. Res., 12045–12061,
https://doi.org/10.1002/2016JD025012., 2016.
McClandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C., and Manney, G. L.: Dynamical control of the mesosphere by orographic and non-orographic wave drag during the extended
northern winters of 2006 and 2009, J. Atmos. Sci., 70, 2152–2169, https://doi.org/10.1175/JAS-D-12-0297.1, 2013.
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., Baker, N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N., Ruston, B., Swadley, S.,
Viner, K., Whitcomb, T., and Hibbins, R.:
Comparison of mesospheric winds from a high-altitude meteorological
analysis system and meteor radar observations during the boreal winters of 2009-2010 and 2012-2013,
J. Atmos. Sol.-Terr. Phy., 154, 132–166, https://doi.org/10.1016/j.jastp.2016.12.007,
2017.
Mcdonald, S. E., Sassi, F., Tate, J., McCormack, J. P., Kuhl, D. D., Drob, D. P., Metzler, C., and
Mannucci, A. J.: Impact of non-migrating tides on the low latitude ionosphere during a
sudden stratospheric warming event in January 2010,
J. Atmos. Sol.-Terr. Phy., 171, 188–200, https://doi.org/10.1016/j.jastp.2017.09.012, 2018.
Minschwaner, K. and Siskind, D. E.: A new calculation of nitric-oxide photolysis in the stratosphere,
mesosphere, and lower thermosphere, J. Geophys. Res., 98, 20401–20412, https://https://doi.org/10.1029/93JD02007,
1993.
Natarajan, M., Remsberg, E. E., Deaver, L., and Russell III, J. M.:
Anomalously high levels of NOx in the polar upper stratosphere during April, 2004: Photochemical
consistency of HALOE observations, Geophys. Res. Lett., 31, L15115, https://doi.org/10.1029/2004GL020566., 2004.
NCAR: Access to WACCM, available at: https://www2.acom.ucar.edu/gcm/waccm, NCAR, [code], last access: 26 August 2021.
Orsolini, Y. J., Limpasuvan, V., Perot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R., and Murtagh, D.:
Modeling the descent of nitric oxide during the elevated stratopause event of January 2013,
J. Atmos. Sol.-Terr. Phy., 155, 50–61, https://doi.org/10.1016/j.jastp.2017.01.006,
2017.
Päivärinta, S.-M., Verronen, P. T., Funke, B., Gardini, A., Seppälä, A., and Andersson, M. E.:
Transport versus energetic particle precipitation: Northern polar stratospheric NOx and ozone in
January-March 2012, J. Geophys. Res., 121, 6085–6100, https://doi.org/10.1002/2015JD024217, 2016.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L., Chau, J. L., Goncharenko, L. P.,
and Siddiqui, T. A.:
Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART,
J. Geophys. Res., 123, 3131–3153, https://doi.org/10.1002/2017JA025107, 2018.
Perot, K. and Orsolini, Y. J.: Impact of the major SSWs of February 2018 and January 2019 on the
middle atmospheric nitric oxide abundance, J. Atmos. Sol.-Terr. Phy., 218, 105586,
https://doi.org/10.1016/j.jastp.2021.105586, 2021.
Pérot, K., Urban, J., and Murtagh, D. P.: Unusually strong nitric oxide descent in the Arctic middle atmosphere in early 2013 as observed by Odin/SMR, Atmos. Chem. Phys., 14, 8009–8015, https://doi.org/10.5194/acp-14-8009-2014, 2014.
Pettit, J. M., Randall, C. E., Peck, E. D., Marsh, D. R., van de Kamp, M., Fang, X., Harvey, V. L., Rodger, C. J., and
Funke, B.: Atmospheric efffects of > 30-keV energetic electron precipitation in the Southern Hemisphere winter during
2003, J. Geophys. Res., 124, : 5747–5763, https://doii.org/10.1029/2019JA026868, 2019.
Randall, C. E., Rusch, D. W., Bevilacqua, R. M., Hoppel, K. W., and Lumpe, J. D.:
Polar Ozone and Aerosol Measurement (POAM) II stratospheric NO2, 1993-1996,
J. Geophys. Res., 103, 28361–38371, 1998.
Randall, C. E., Siskind, D. E., and Bevilacqua, R. M.: Stratospheric NOx enhancements
in the southern hemisphere vortex in winter/spring of 2000, Geophys. Res.
Lett., 28, 2385–2388, 2001.
Randall, C. E., Lumpe, J. D., Bevilacqua, R. M., Hoppel, K. W., Fromm, M. D., Salawitch, R. J.,
Swartz, W. H., Lloyd, S. A., Kyro, E., von der Gathen, P., Claude, H., Davies, J., DeBacker H., Dier, H., Molyneux, M. J., and
Sancho, J.: Reconstruction of three-dimensional ozone fields using POAM III during SOLVE, J. Geophys. Res., 107, 8299,
https://doi.org/10.1029/2001JD000471., 2002.
Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris, C., Brohede, S.,
Haley, C. S., Gordley, L. L., Zawodny, J. M., and Russell III, J. M.: Stratospheric effects
of energetic particle precipitation in 2003-2004, Geophys. Res. Lett., 32, L05802,
https://doi.org/10.1029/2004GL022003, 2005a.
Randall, C. E., Manney, G. L., Allen, D. R., Bevilacqua, R. M., Hornstein, J.,
Trepte, C., Lahoz, W., Ajtic, J. V., and Bodeker, G.: Reconstruction and simulation of stratospheric ozone
distributions during the 2002 Austral winter, J. Atmos. Sci., 62., 748–764, https://doi.org/10.1175/JAS-3336.1, 2005b.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bernath, P. F., Boone, C. D., and Kozyra, J. U.:
Enhanced NOx in 2006 linked to strong Arctic stratospheric vortex,
Geophys. Res. Lett., 33, L18811, https://doi.org/10.1029/2006GL027160, 2006.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and
Russell III, J. M.: Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992-2005,
J. Geophys. Res., 112, D08308, https://doi.org/10.1029/2006JD07696, 2007.
Randall, C. E., Harvey, V. L., Siskind, D. E., France, J., Bernath, P. F., Boone, C. D., and Walker, K. A.:
NOx descent in the Arctic middle atmosphere in early 2009,
Geophys. Res. Lett., 36, L18811, https://doi.org/10.1029/2009GL039706, 2009.
Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke B., and Bernath, P. F.:
Simulations of energetic particle precipitation effects during the 2003-2004 Arctic winter, J. Geophys. Res., 5035–5048, https://doi.org/10.1002/2015JA021196, 2015.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D, Lingenfelser, G. S., Martin-Torres, J.,
Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, J. J.,
Lopez-Puertas, M., She, C. Y., Taylor, M. J., and Thompson, R. E.: Assessment of the quality of the version 1.07
temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101,
https://doi.org/10.1029/2008JD010013, 2008.
Rezac, A., Kutepov, A., Russell III, J. M., Feofilov, A. G., amd Yue, J.: Simultaneous retrieval of T(p)
and CO2 VMR from two channel non-LTE limb radiances and application to daytime SABER/TIMED
measurements, J. Atmos. Sol.-Terr. Phy., 130, 23–42, https://doi.org/10.1016/j.jastp.2015.05.004, 2015.
Rinsland, C. P., Salawitch, R. J., Gunson, M. R., Solomon, S., Zander, R., Mahieu, E.,
Goldman, A., Newchurch, M. J., Irion, F. W., and Chang, A. Y.: Polar stratospheric descent of NOy and CO and Arctic denitrification during winter 1992-1993, J. Geophys. Res., 104, 1847–1861, 1999.
Russell III, J. M., Solomon, S., Gordley, L. L., Remsberg, E. E., and Callis, L. B.:
The variability of stratospheric and mesospheric NO2 in the polar night winter observed by
LIMS, J. Geophys. Res., 89, 7267–7275, 1984.
Salmi, S.-M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., and Seppälä, A.: Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming, Atmos. Chem. Phys., 11, 4645–4655, https://doi.org/10.5194/acp-11-4645-2011, 2011.
Sassi, F., and Liu, H.-L., Ma, J., and Garcia, R. R.: The lower thermosphere during the northern winter of 2009: A modeling study using high-altitude data assimilation products in WACCMX, J. Geophys. Res., 118, 8954–8968,
https://doi.org/10.1002/jgrd.50632, 2013.
Sassi, F., Siskind, D. E., Tate, J. L., Liu, H.-L., and Randall, C. E.: Simulations of the boreal
winter upper mesosphere and lower thermosphere with meteorological specifications in
SD-WACCM-X, J. Geophys. Res., 123, 3791–3811, https://doi.org/10.1002/2017JD027782., 2018.
Sassi, F., McCormack, J. P., Tate, J. L., Kuhl, D. D., and Baker, N. L.: Assessing the
impact of middle atmosphere observations on day-to-day variability in lower thermospheric winds using
WACCMX, J. Atmos. Sol.-Terr. Phy., 212, https://doi.org/10.1016/j.jastp.2020.105486, 2021.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L.,
Ao, C. O., Bernath, P. F., Booned, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J.,
Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Kruger, K.,
Li, J.-L., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and
Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature
and geopotential height
measurements, J. Geophys. Res., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and Rodger, C. J.:
Geomagnetic activity and polar surface air temperature variablity,
J. Geophys. Res., 14, A10312, https://doi.org/10.1029/2008JA014029, 2009.
Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM, Ann. Geophys., 32, 589–608, https://doi.org/10.5194/angeo-32-589-2014, 2014.
Sinnhuber, M., Friedrich, F., and Bender, S.: The response of mesospheric NO to geomagnetic
forcing in 2002-2012 as seen by SCIAMACHY, J. Geophys. Res., 121, 3603–3620,
https://doi.org/10.1002/2015JA022284, 2016.
Siskind. D. E., Barth, C. A., Evans, D. S., and Roble, R. G.:
The response of thermospheric nitric oxide to an auroral storm 2. Auroral latitudes,
J. Geophys. Res., 94, 16899–16911, 1989.
Siskind, D. E., Barth, C. A., and Cleary, D. D.:
The possible effect of solar soft X rays on thermospheric nitric oxide, J.
Geophys. Res., 95, 4311–4317, 1990.
Siskind, D. E. and Russell III, J. M.: Coupling between middle and upper atmospheric
NO: Constraints from HALOE observations, Geophys. Res. Lett., 23, 137–140, 1996.
Siskind, D. E., Nedoluha, G. E., Randall, C. E., Fromm, M., and Russell III, J. M.:
An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from
the upper atmosphere, Geophys. Res. Lett., 27, 329–332, https://doi.org/10.1029/1999GL010940, 2000.
Siskind, D. E., Eckermann, S. D., Coy, L., McCormack, J. P., and Randall, C. E.:
On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent,
Geophys. Res. Lett., 34, L09806, https://doi.org/10.1029/2007GL029293, 2007.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W., and Baker, N. L.:
Case studies of the mesospheric response to minor, major and extended
stratospheric warmings, J. Geophys. Res., 115, D00N03, https://doi.org/10.1029/2010JD014114, 2010.
Siskind, D. E., Sassi, F., Randall, C. E., Harvey, V. L., Hervig, M. E., and Bailey, S. M.: Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere
coupling?, Geophys. Res. Lett., 42, 8225–8230, doi.10.1002/2015GL065838, 2015.
Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H.:
WACCM simulations of the mean circulation and trace species transport in the
winter mesosphere, J. Geophys. Res., 116, D20115, https://doi.org/10.1029/2011JD016083, 2011.
Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 32, 1177–1230,
https://doi.org/10.1007/s10712-012-9196-9, 2012.
SOFIE: SOFIE Database, Level 2 Data Access, [data set] available at: https://sofie.gats-inc.com, last access: 26 August 2021.
Solomon, S., Crutzen, P. J., and Roble, R. G.: Photochemical coupling between the thermosphere and the lower atmosphere 1. Odd nitrogen between 50 to 120 km,
J. Geophys. Res., 87, 7206–7220, 1982.
Stober, G., Baumgarten, K., McCormack, J. P., Brown, P., and Czarnecki, J.: Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region, Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, 2020.
Straub, C., Tschanz, B., Hocke, K., Kämpfer, N., and Smith, A. K.: Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation, Atmos. Chem. Phys., 12, 5413–5427, https://doi.org/10.5194/acp-12-5413-2012, 2012.
Swadley, S. D., Poe, G. A., Bell, W., Hong, Y., Kunkee, D. B., McDermid, I. S., and Leblanc, T.:
Analysis and characterization of the SSMIS upper atmosphere sounding channel measurement, IEEE T. Geosci. Remote, 46, 962–983, https://doi.org/10.1109/TGFS.2008.916980, 2008.
US Naval Research Laboratory: Publically Accessible Data Downloads, [data set], available at: https://map.nrl.navy.mil/map/pub/nrl/jgrspace2020/lightspecies/navgem, last access: 26 August 2021.
Winick, J. R., Wintersteiner, P. P., Picard, R. H., Esplin, D., Mlynczak, M. G., Russell III, J. M., and Gordley, L. L.: OH layer characteristics during unusual boreal winters of 2004 and 2006, J. Geophys. Res., 114, A02303, https://doi.org/10.1029/2008JA013688, 2009.
Short summary
General circulation models have had a very difficult time simulating the descent of nitric oxide through the polar mesosphere to the stratosphere. Here, we present results suggesting that, with the proper specification of middle atmospheric meteorology, the simulation of this process can be greatly improved. Despite differences in the detailed geographic morphology of the model NO as compared with satellite data, we show that the overall abundance is likely in good agreement with the data.
General circulation models have had a very difficult time simulating the descent of nitric oxide...
Altmetrics
Final-revised paper
Preprint