Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-13571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Brewer–Dobson circulation in CMIP6
Earth Physics and Astrophysics Department, Universidad Complutense de Madrid, Madrid, Spain
Natalia Calvo
Earth Physics and Astrophysics Department, Universidad Complutense de Madrid, Madrid, Spain
Samuel Benito-Barca
Earth Physics and Astrophysics Department, Universidad Complutense de Madrid, Madrid, Spain
Hella Garny
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
Steven C. Hardiman
Met Office Hadley Centre, Exeter, United Kingdom
Pu Lin
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
Martin B. Andrews
Met Office Hadley Centre, Exeter, United Kingdom
Neal Butchart
Met Office Hadley Centre, Exeter, United Kingdom
Rolando Garcia
National Center for Atmospheric Research, Boulder, CO, USA
Clara Orbe
NASA Goddard Institute for Space Studies, New York, NY, USA
David Saint-Martin
Centre National de Recherches Météorologiques, Toulouse, France
Shingo Watanabe
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
Kohei Yoshida
Meteorological Research Institute, Tsukuba, Japan
Viewed
Total article views: 3,917 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,600 | 1,259 | 58 | 3,917 | 46 | 33 |
- HTML: 2,600
- PDF: 1,259
- XML: 58
- Total: 3,917
- BibTeX: 46
- EndNote: 33
Total article views: 2,307 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Sep 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,719 | 548 | 40 | 2,307 | 44 | 26 |
- HTML: 1,719
- PDF: 548
- XML: 40
- Total: 2,307
- BibTeX: 44
- EndNote: 26
Total article views: 1,610 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
881 | 711 | 18 | 1,610 | 2 | 7 |
- HTML: 881
- PDF: 711
- XML: 18
- Total: 1,610
- BibTeX: 2
- EndNote: 7
Viewed (geographical distribution)
Total article views: 3,917 (including HTML, PDF, and XML)
Thereof 4,014 with geography defined
and -97 with unknown origin.
Total article views: 2,307 (including HTML, PDF, and XML)
Thereof 2,412 with geography defined
and -105 with unknown origin.
Total article views: 1,610 (including HTML, PDF, and XML)
Thereof 1,602 with geography defined
and 8 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
15 citations as recorded by crossref.
- Changes in Stratosphere‐Troposphere Exchange of Air Mass and Ozone Concentration in CCMI Models From 1960 to 2099 M. Wang & Q. Fu 10.1029/2023JD038487
- Stratosphere‐Troposphere Exchanges of Air Mass and Ozone Concentration in the Last Glacial Maximum M. Wang et al. 10.1029/2021JD036327
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Tropospheric Expansion Under Global Warming Reduces Tropical Lower Stratospheric Ozone A. Match & E. Gerber 10.1029/2022GL099463
- Weakening of the tropical tropopause layer cold trap with global warming S. Bourguet & M. Linz 10.5194/acp-23-7447-2023
- The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet A. Siahaan et al. 10.5194/tc-16-4053-2022
- The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing D. Elsbury et al. 10.5194/acp-23-5101-2023
- Global biosphere primary productivity changes during the past eight glacial cycles J. Yang et al. 10.1126/science.abj8826
- Hemispheric asymmetries in recent changes in the stratospheric circulation F. Ploeger & H. Garny 10.5194/acp-22-5559-2022
- Comment on “Observation of large and all-season ozone losses over the tropics” [AIP Adv. 12, 075006 (2022)] M. Chipperfield et al. 10.1063/5.0121723
- Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4 P. Vargin et al. 10.3389/feart.2023.1214418
- Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021 M. Prather et al. 10.5194/acp-23-843-2023
- Arctic Stratosphere Circulation Changes in the 21st Century in Simulations of INM CM5 P. Vargin et al. 10.3390/atmos13010025
- The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere J. Kult-Herdin et al. 10.1088/1748-9326/acb0e6
- Long-term variability of human health-related solar ultraviolet-B radiation doses from the 1980s to the end of the 21st century C. Zerefos et al. 10.1152/physrev.00031.2022
15 citations as recorded by crossref.
- Changes in Stratosphere‐Troposphere Exchange of Air Mass and Ozone Concentration in CCMI Models From 1960 to 2099 M. Wang & Q. Fu 10.1029/2023JD038487
- Stratosphere‐Troposphere Exchanges of Air Mass and Ozone Concentration in the Last Glacial Maximum M. Wang et al. 10.1029/2021JD036327
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Tropospheric Expansion Under Global Warming Reduces Tropical Lower Stratospheric Ozone A. Match & E. Gerber 10.1029/2022GL099463
- Weakening of the tropical tropopause layer cold trap with global warming S. Bourguet & M. Linz 10.5194/acp-23-7447-2023
- The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet A. Siahaan et al. 10.5194/tc-16-4053-2022
- The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing D. Elsbury et al. 10.5194/acp-23-5101-2023
- Global biosphere primary productivity changes during the past eight glacial cycles J. Yang et al. 10.1126/science.abj8826
- Hemispheric asymmetries in recent changes in the stratospheric circulation F. Ploeger & H. Garny 10.5194/acp-22-5559-2022
- Comment on “Observation of large and all-season ozone losses over the tropics” [AIP Adv. 12, 075006 (2022)] M. Chipperfield et al. 10.1063/5.0121723
- Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4 P. Vargin et al. 10.3389/feart.2023.1214418
- Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021 M. Prather et al. 10.5194/acp-23-843-2023
- Arctic Stratosphere Circulation Changes in the 21st Century in Simulations of INM CM5 P. Vargin et al. 10.3390/atmos13010025
- The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere J. Kult-Herdin et al. 10.1088/1748-9326/acb0e6
- Long-term variability of human health-related solar ultraviolet-B radiation doses from the 1980s to the end of the 21st century C. Zerefos et al. 10.1152/physrev.00031.2022
Latest update: 29 Sep 2023
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers...
Altmetrics
Final-revised paper
Preprint