Articles | Volume 21, issue 16
Atmos. Chem. Phys., 21, 12317–12329, 2021
Atmos. Chem. Phys., 21, 12317–12329, 2021

Research article 17 Aug 2021

Research article | 17 Aug 2021

Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes

Bipin Kumar et al.

Related authors

Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model
Lois Thomas, Wojciech W. Grabowski, and Bipin Kumar
Atmos. Chem. Phys., 20, 9087–9100,,, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290,,, 2021
Short summary
Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067,,, 2021
Short summary
Aitken mode particles as CCN in aerosol- and updraft-sensitive regimes of cloud droplet formation
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740,,, 2021
Short summary
Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760,,, 2021
Short summary
The climate impact of COVID-19-induced contrail changes
Andrew Gettelman, Chieh-Chieh Chen, and Charles G. Bardeen
Atmos. Chem. Phys., 21, 9405–9416,,, 2021
Short summary

Cited articles

Ayala, O., Rosa, B., Wang L. P., and Grabowski, W. W.: Effects of turbulence on the geometric collision rate of sedimenting droplets, Part 1: Results from direct numerical simulation, New J. Phys., 10, 075015,, 2008. a
Baker, M. B. and Latham, J.: The Evolution of Droplet Spectra and the Rate of Production of Embryonic Raindrops in Small Cumulus Clouds, J. Atmos. Sci., 36, 1612–1615, 1979. a
Bengtsson, L.: The global atmospheric water cycle, IOP Publishing Ltd, Environ. Res. Lett., 5, 025202,, 2010. a
Bera, S.: Droplet spectral dispersion by lateral mixing process in continental deep cumulus clouds, J. Atmos. Sol.-Terr. Phys., 214, 105550,, 2021. a
Bera, S., Prabha, T. V., and Grabowski, W. W.: Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing, J. Geophys. Res.-Atmos., 121, 9767–9788,, 2016. a, b
Short summary
The characteristics of turbulent clouds are affected by the entrainment of ambient dry air and its subsequent mixing. A turbulent flow generates vorticities of different intensities, and regions with high vorticity (HV) and low vorticity (LV) exist. This study provides a detailed analysis of different properties of turbulent flows and cloud droplets in the HV and LV regions in order to understand the impact of vorticity production on cloud microphysical and mixing processes.
Final-revised paper