Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12317-2021
https://doi.org/10.5194/acp-21-12317-2021
Research article
 | 
17 Aug 2021
Research article |  | 17 Aug 2021

Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes

Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao

Related authors

Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model
Lois Thomas, Wojciech W. Grabowski, and Bipin Kumar
Atmos. Chem. Phys., 20, 9087–9100, https://doi.org/10.5194/acp-20-9087-2020,https://doi.org/10.5194/acp-20-9087-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary

Cited articles

Ayala, O., Rosa, B., Wang L. P., and Grabowski, W. W.: Effects of turbulence on the geometric collision rate of sedimenting droplets, Part 1: Results from direct numerical simulation, New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015, 2008. a
Baker, M. B. and Latham, J.: The Evolution of Droplet Spectra and the Rate of Production of Embryonic Raindrops in Small Cumulus Clouds, J. Atmos. Sci., 36, 1612–1615, 1979. a
Bengtsson, L.: The global atmospheric water cycle, IOP Publishing Ltd, Environ. Res. Lett., 5, 025202, https://doi.org/10.1088/1748-9326/5/2/025202, 2010. a
Bera, S.: Droplet spectral dispersion by lateral mixing process in continental deep cumulus clouds, J. Atmos. Sol.-Terr. Phys., 214, 105550, https://doi.org/10.1016/j.jastp.2021.105550, 2021. a
Bera, S., Prabha, T. V., and Grabowski, W. W.: Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing, J. Geophys. Res.-Atmos., 121, 9767–9788, https://doi.org/10.1002/2016JD025133, 2016. a, b
Download
Short summary
The characteristics of turbulent clouds are affected by the entrainment of ambient dry air and its subsequent mixing. A turbulent flow generates vorticities of different intensities, and regions with high vorticity (HV) and low vorticity (LV) exist. This study provides a detailed analysis of different properties of turbulent flows and cloud droplets in the HV and LV regions in order to understand the impact of vorticity production on cloud microphysical and mixing processes.
Altmetrics
Final-revised paper
Preprint