Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-8953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models
Department of Geosciences, University of Oslo, Postboks 1022 Blindern, 0315 Oslo, Norway
now at: Department of Physics, Lund University, Box 118, 22100 Lund, Sweden
Sara M. Blichner
Department of Geosciences, University of Oslo, Postboks 1022 Blindern, 0315 Oslo, Norway
Roland Schrödner
Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany
Inger H. H. Karset
Department of Geosciences, University of Oslo, Postboks 1022 Blindern, 0315 Oslo, Norway
Terje K. Berntsen
Department of Geosciences, University of Oslo, Postboks 1022 Blindern, 0315 Oslo, Norway
CICERO Center for International Climate Research, Postboks 1129 Blindern, 0318 Oslo, Norway
Twan van Noije
Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, the Netherlands
Tommi Bergman
Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, the Netherlands
Climate System Research, Finnish Meteorological Institute, P.O. Box 503, F00101, Helsinki, Finland
Declan O'Donnell
Climate System Research, Finnish Meteorological Institute, P.O. Box 503, F00101, Helsinki, Finland
Risto Makkonen
Climate System Research, Finnish Meteorological Institute, P.O. Box 503, F00101, Helsinki, Finland
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, F00014, Finland
Data sets
Data for: Large difference in aerosol radiative effects from BVOC-SOA treatment in three ESMs M. K. Sporre https://doi.org/10.11582/2020.00032
Short summary
We investigate how emissions and parameters in current
SOA parameterisations in three ESMs affect both the resulting SOA in the models and the impact this has on climate through the direct and indirect aerosol effects. The SOA changes induce very different responses in the models, especially in terms of the indirect aerosol effect. This introduces uncertainties in ESM estimates of SOA climate impact through feedbacks in a warming climate and through anthropogenic land use change.
We investigate how emissions and parameters in current
SOA parameterisations in three ESMs...
Similar articles
The impact of uncertainty in black...
Digby et al.
Accounting for the black carbon aging...
Jin et al.