Articles | Volume 20, issue 12
https://doi.org/10.5194/acp-20-7575-2020
https://doi.org/10.5194/acp-20-7575-2020
Research article
 | 
30 Jun 2020
Research article |  | 30 Jun 2020

Synergistic enhancement of urban haze by nitrate uptake into transported hygroscopic particles in the Asian continental outflow

Jihoon Seo, Yong Bin Lim, Daeok Youn, Jin Young Kim, and Hyoun Cher Jin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jin Young Kim on behalf of the Authors (17 May 2020)  Manuscript 
ED: Publish subject to minor revisions (review by editor) (20 May 2020) by Barbara Ervens
AR by Jin Young Kim on behalf of the Authors (21 May 2020)  Author's response   Manuscript 
ED: Publish as is (03 Jun 2020) by Barbara Ervens
AR by Jin Young Kim on behalf of the Authors (03 Jun 2020)
Download
Short summary
This study investigates the synergistic role of transported regional haze in increasing local inorganic aerosols. PM2.5 data measured at Seoul, South Korea, together with a thermodynamic model show that the transported haze particles from the polluted continent are richer in inorganics and wetter than the local haze particles. The transported wet particles readily increase the inorganic aerosols through the uptake of HNO3 in NOx- and NH3-rich urban environments like Seoul.
Altmetrics
Final-revised paper
Preprint