Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 6
Atmos. Chem. Phys., 20, 3503–3553, 2020
https://doi.org/10.5194/acp-20-3503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 3503–3553, 2020
https://doi.org/10.5194/acp-20-3503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Mar 2020

Research article | 25 Mar 2020

Statistical analysis of ice microphysical properties in tropical mesoscale convective systems derived from cloud radar and in situ microphysical observations

Emmanuel Fontaine et al.

Viewed

Total article views: 863 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
626 219 18 863 19 23
  • HTML: 626
  • PDF: 219
  • XML: 18
  • Total: 863
  • BibTeX: 19
  • EndNote: 23
Views and downloads (calculated since 21 Jun 2019)
Cumulative views and downloads (calculated since 21 Jun 2019)

Viewed (geographical distribution)

Total article views: 697 (including HTML, PDF, and XML) Thereof 692 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 03 Aug 2020
Publications Copernicus
Download
Short summary
This study investigates properties of ice hydrometeors (shape, concentration, density, and size) in deep convective systems. The analysis focuses on similarities and differences over four locations in the tropical troposphere. It shows that measurements as a function of temperature and radar reflectivity factors tend to be similar in the four types of deep convective systems when concentrations of ice are larger than 0.1 g m-3.
This study investigates properties of ice hydrometeors (shape, concentration, density, and size)...
Citation
Final-revised paper
Preprint