Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 3249–3258, 2020
https://doi.org/10.5194/acp-20-3249-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 3249–3258, 2020
https://doi.org/10.5194/acp-20-3249-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Mar 2020

Research article | 18 Mar 2020

Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability

Athanasios Nenes et al.

Model code and software

ISORROPIA EPFL http://isorropia.epfl.ch

Publications Copernicus
Download
Short summary
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously ignored parameters that drive particulate matter formation in the atmosphere, and its sensitivity to emissions of ammonia and nitric acid. The simple framework presented is easily applied to ambient measurements or model output, and it provides the chemical regime of PM sensitivity to ammonia and nitric acid availability.
We show that aerosol acidity (pH) and liquid water content naturally emerge as previously...
Citation
Final-revised paper
Preprint