Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 3091–3105, 2020
https://doi.org/10.5194/acp-20-3091-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 20, 3091–3105, 2020
https://doi.org/10.5194/acp-20-3091-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Mar 2020

Research article | 16 Mar 2020

Kinetics of the OH + NO2 reaction: effect of water vapour and new parameterization for global modelling

Damien Amedro et al.

Viewed

Total article views: 1,059 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
814 229 16 1,059 56 21 22
  • HTML: 814
  • PDF: 229
  • XML: 16
  • Total: 1,059
  • Supplement: 56
  • BibTeX: 21
  • EndNote: 22
Views and downloads (calculated since 03 Dec 2019)
Cumulative views and downloads (calculated since 03 Dec 2019)

Viewed (geographical distribution)

Total article views: 753 (including HTML, PDF, and XML) Thereof 748 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 14 Aug 2020
Publications Copernicus
Download
Short summary
Our laboratory experiments show that the rate coefficient for the termolecular reaction between OH and NO2 is enhanced in the presence of water vapour. Using a chemistry transport model we show that our new parameterization of the temperature, pressure, and bath-gas dependence of this reaction has a significant impact on, for example, NOx and the HNO2 / NO2 ratio when compared to present recommendations.
Our laboratory experiments show that the rate coefficient for the termolecular reaction between...
Citation
Final-revised paper
Preprint