Articles | Volume 20, issue 5
https://doi.org/10.5194/acp-20-2709-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-2709-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Significant seasonal changes in optical properties of brown carbon in the midlatitude atmosphere
Heejun Han
School of Earth and Environmental Sciences/RIO, Seoul National
University, Seoul, 08826, South Korea
School of Earth and Environmental Sciences/RIO, Seoul National
University, Seoul, 08826, South Korea
Hojong Seo
School of Earth and Environmental Sciences/RIO, Seoul National
University, Seoul, 08826, South Korea
Kyung-Hoon Shin
Department of Marine Sciences and Convergent Technology, Hanyang
University, Ansan, 15588, South Korea
Dong-Hun Lee
Department of Marine Sciences and Convergent Technology, Hanyang
University, Ansan, 15588, South Korea
Related authors
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Heejun Han and Guebuem Kim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-554, https://doi.org/10.5194/acp-2017-554, 2017
Revised manuscript has not been submitted
Short summary
Short summary
This paper evaluates significant seasonal changes in atmospheric humic-like substance (HULIS) and water-soluble organic carbon (WSOC) in Seoul, Korea. We found that these changes were greatly induced by UV radiation over different seasons, and this was further confirmed by a laboratory experiment. Our results suggest that photochemical degradation plays a significant role in HULIS abundances in the atmosphere and might be an important removal mechanism of light-absorbing organic aerosols.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Shin-Ah Lee, Tae-Hoon Kim, and Guebuem Kim
Biogeosciences, 17, 135–144, https://doi.org/10.5194/bg-17-135-2020, https://doi.org/10.5194/bg-17-135-2020, 2020
Short summary
Short summary
We differentiate between sources of dissolved organic matter (DOM) (terrestrial, marine autochthonous production, and artificial island and seawater interaction) in coastal bay waters surrounded by large cities using multiple DOM tracers, including dissolved organic carbon (DOC) and nitrogen (DON), stable carbon isotopes, fluorescent DOM, and the DOC/DON ratio.
Dong-Hun Lee, Jung-Hyun Kim, Yung Mi Lee, Alina Stadnitskaia, Young Keun Jin, Helge Niemann, Young-Gyun Kim, and Kyung-Hoon Shin
Biogeosciences, 15, 7419–7433, https://doi.org/10.5194/bg-15-7419-2018, https://doi.org/10.5194/bg-15-7419-2018, 2018
Short summary
Short summary
In this study, we provide first evidence of lipid biomarker patterns and phylogenetic identities of key microbes mediating anaerobic oxidation of methane (AOM) communities in active mud volcanoes (MVs) on the continental slope of the Canadian Beaufort Sea. Our lipid and 16S rRNA results indicate that archaea of the ANME-2c and ANME-3 clades are involved in AOM in the MVs investigated.
Shin-Ah Lee and Guebuem Kim
Biogeosciences, 15, 1115–1122, https://doi.org/10.5194/bg-15-1115-2018, https://doi.org/10.5194/bg-15-1115-2018, 2018
Short summary
Short summary
The fluorescent dissolved organic matter (FDOM) delivered from riverine discharges significantly affects carbon and biogeochemical cycles in coastal waters. Our results show that the terrestrial concentrations of humic-like FDOM in river water were 60–80 % higher in the summer and fall, while the in situ production of protein-like FDOM was 70–80 % higher in the spring. Our results suggest that there are large seasonal changes in riverine fluxes of FDOM components to the ocean.
Ki-Tae Park, Sehyun Jang, Kitack Lee, Young Jun Yoon, Min-Seob Kim, Kihong Park, Hee-Joo Cho, Jung-Ho Kang, Roberto Udisti, Bang-Yong Lee, and Kyung-Hoon Shin
Atmos. Chem. Phys., 17, 9665–9675, https://doi.org/10.5194/acp-17-9665-2017, https://doi.org/10.5194/acp-17-9665-2017, 2017
Short summary
Short summary
We evaluated the connection between DMS and the formation of aerosol particles in the Arctic atmosphere by analyzing multiple datasets of atmospheric DMS, aerosol particle size distributions and aerosol chemical composition that were collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April–May 2015. The key finding from this research is that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the phytoplankton bloom period.
Heejun Han and Guebuem Kim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-554, https://doi.org/10.5194/acp-2017-554, 2017
Revised manuscript has not been submitted
Short summary
Short summary
This paper evaluates significant seasonal changes in atmospheric humic-like substance (HULIS) and water-soluble organic carbon (WSOC) in Seoul, Korea. We found that these changes were greatly induced by UV radiation over different seasons, and this was further confirmed by a laboratory experiment. Our results suggest that photochemical degradation plays a significant role in HULIS abundances in the atmosphere and might be an important removal mechanism of light-absorbing organic aerosols.
Tae-Hoon Kim, Guebuem Kim, Yuan Shen, and Ronald Benner
Biogeosciences, 14, 2561–2570, https://doi.org/10.5194/bg-14-2561-2017, https://doi.org/10.5194/bg-14-2561-2017, 2017
Short summary
Short summary
Significantly high total hydrolysable amino acid concentrations and yields were observed in the East/Japan Sea of deep-water formation, indicating the convection of margin-derived bioavailable dissolved organic matter to deep waters. Our observational results suggest that the effective transport of bioavailable DOM to the deep ocean can be significantly sensitive to changes in the deep-water renewal rates and in temperature of the surface ocean, linked to global warming.
G. Yan and G. Kim
Atmos. Chem. Phys., 15, 2761–2774, https://doi.org/10.5194/acp-15-2761-2015, https://doi.org/10.5194/acp-15-2761-2015, 2015
A. O. Badejo, B.-H. Choi, H.-G. Cho, H.-I. Yi, and K.-H. Shin
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-1527-2014, https://doi.org/10.5194/cpd-10-1527-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Amie Dobracki, Ernie Lewis, Arthur Sedlacek III, Tyler Tatro, Maria Zawadowicz, and Paquita Zuidema
EGUsphere, https://doi.org/10.5194/egusphere-2024-1347, https://doi.org/10.5194/egusphere-2024-1347, 2024
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer of the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes, both heterogeneous and aqueous-phase determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Cited articles
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Baduel, C., Voisin, D., and Jaffrezo, J. L.: Comparison of analytical methods for Humic Like Substances (HULIS) measurements in atmospheric particles, Atmos. Chem. Phys., 9, 5949–5962, https://doi.org/10.5194/acp-9-5949-2009, 2009.
Baduel, C., Voisin, D., and Jaffrezo, J.-L.: Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments, Atmos. Chem. Phys., 10, 4085–4095, https://doi.org/10.5194/acp-10-4085-2010, 2010.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic
matter in cave and spring waters using UV-Vis absorbance and fluorescence
spectroscopy, Org. Geochem., 41, 270–280,
https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Bro, R.: PARAFAC. Tutorial and applications, Chemometr. Intell. Lab., 38,
149–171, https://doi.org/10.1016/S0169-7439(97)00032-4, 1997.
Chen, Q., Ikemori, F., and Mochida, M.: Light absorption and
excitation-emission fluorescence of urban organic aerosol components and
their relationship to chemical structure, Environ. Sci. Technol., 50,
10859–10868, https://doi.org/10.1021/acs.est.6b02541, 2016.
Coble, P. G.: Marine optical biogeochemistry: the chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Das, O., Wang, Y., and Hsieh, Y.-P.: Chemical and carbon isotopic
characteristics of ash and smoke derived from burning of C3 and C4
grasses, Org. Geochem., 41, 263–269,
https://doi.org/10.1016/j.orggeochem.2009.11.001, 2010.
Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K.,
Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S.,
Tiwari, S., Hameed, Z., and Gustafsson, Ö.: Photochemical degradation
affects the light absorption of water-soluble brown carbon in the South
Asian outflow, Sci. Adv., 5, eaau8066,
https://doi.org/10.1126/sciadv.aau8066, 2019.
Del Vecchio, R. and Blough, N. V.: Photobleaching of chromophoric dissolved
organic matter in natural waters: Kinetics and modelling, Mar. Chem., 78,
231–253, https://doi.org/10.1016/S0304-4203(02)00036-1, 2002.
Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A.
S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O.,
Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in
the atmosphere: a review, Tellus B, 64, 15598,
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Duarte, R. M. B. O. and Duarte, A. C.: Atmospheric organic matter, eMagRes,
2, 415–426, https://doi.org/10.1002/9780470034590.emrstm1331, 2013.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L.,
Anderson, B., Diskin, B., Perring, A. E., Schwarz, J. P., Campuzano-Jost,
P., Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.:
Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42,
4623–4630, https://doi.org/10.1002/2015GL063897, 2015.
Fu, P., Kawamura, K., Chen, J., Qin, M., Ren, L., Sun, Y., Wang, Z., Barrie,
L. A., Tachibana, E., Ding, A., and Yamashita, Y.: Fluorescent water-soluble
organic aerosols in the High Arctic atmosphere, Sci. Rep.-UK, 5, 9845,
https://doi.org/10.1038/srep09845, 2015.
Gabriel, R., Mayol-Bracero, O. L., and Andreae, M. O.: Chemical
characterization of submicron aerosol particles collected over the Indian
Ocean, J. Geophys. Res., 107, 8005, https://doi.org/10.1029/2000JD000034,
2002.
Ghan, S. J. and Schwartz, S. E.: Aerosol properties and processes: A path
from field and laboratory measurements to global climate models, Amer.
Meteor. Soc., 88, 1059–1083, 2007.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R. J., Granat, L.,
Engström, E., Praveen, P. S., Rao, P. S. P., Leck, C., and Rodhe, H.:
Brown clouds over South Asia: biomass or fossil fuel combustion?, Science,
323, 495–498, https://doi.org/10.1126/science.1164857, 2009.
Healy, R. M., Wang, J. M., Sofowote, U., Su, Y., Debosz, J., Noble, M.,
Munoz, A., Jeong, C.-H., Hilker, N., Evans, G. J., and Doerksen, G.: Black
carbon in the Lower Fraser Valley, British Columbia: Impact of 2017
wildfires on local air quality and aerosol optical properties, Atmos.
Environ., 217, 116976, https://doi.org/10.1016/j.atmosenv.2019.116976, 2019.
Helms, J. R., Stubbins, A., Ritchie, J. D., and Minor, E. C.: Absorption
spectral slopes and slope ratios as indicators of molecular weight, source,
and photobleaching of chromophoric dissolved organic matter, Limnol.
Oceanogr., 33, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.:
Levoglucosan stability in biomass burning particles exposed to hydroxyl
radicals, Geophys. Res. Lett., 37, L09806,
https://doi.org/10.1029/2010GL043088, 2010.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006.
Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric
stability of levoglucosan: a detailed laboratory and modeling study,
Environ. Sci. Technol., 44, 694–699, https://doi.org/10.1021/es902476f,
2010.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kawashima, H. and Haneishi, Y.: Effects of combustion emissions from the
Eurasian continent in winter on seasonal δ13C of elemental
carbon in aerosols in Japan, Atmos. Environ., 46, 568–579,
https://doi.org/10.1016/j.atmosenv.2011.05.015, 2012.
Kelly, S. D., Stein, C., and Jickelle, T. D.: Carbon and nitrogen isotopic
analysis of atmospheric organic matter, Atmos. Environ., 39, 6007–6011,
https://doi.org/10.1016/j.atmosenv.2005.05.030, 2005.
Kieber, R. J., Whitehead, R. F., Reid, S. N., Willey, J. D., and Seaton, P.
J.: Chromophoric dissolved organic matter (CDOM) in rainwater, Southeastern
North Carolina, USA, J. Atmos. Chem., 54, 21–41, 2006.
Kim, T.-H., Kim, G., Lee, S.-A., and Dittmar, T.: Extraordinary slow
degradation of dissolved organic carbon (DOC) in a cold marginal sea, Sci.
Rep.-UK, 5, 13808, https://doi.org/10.1038/srep13808, 2015.
Kirillova, E. N., Andersson, A., Han, J., Lee, M., and Gustafsson, Ö.: Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China, Atmos. Chem. Phys., 14, 1413–1422, https://doi.org/10.5194/acp-14-1413-2014, 2014a.
Kirillova, E. N., Andersson, A., Tiwari, S., Sribastava, A. K., Bisht, D.
S., and Gustafsson, Ö.: Water-soluble organic carbon aerosols during a
fall New Delhi winter: Isotope-based source apportionment and optical
properties, J. Geophys. Res.-Atmos., 119, 3476–3485,
https://doi.org/10.1002/2013JD020041, 2014b.
Kuang, B. Y., Lin, P., Huang, X. H. H., and Yu, J. Z.: Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers, Atmos. Chem. Phys., 15, 1995–2008, https://doi.org/10.5194/acp-15-1995-2015, 2015.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence intensity calibration using
the raman scatter peak of water, Appl. Spectrosc., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q., and Ying, Q.: Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model, Atmos. Chem. Phys., 19, 2327–2341, https://doi.org/10.5194/acp-19-2327-2019, 2019.
Lin, C.-Y., Sheng, Y.-F., Chen, W.-N., Wang, Z., Kuo, C.-H., Chen, W.-C., and Yang, T.: The impact of channel effect on Asian dust transport dynamics: a case in southeastern Asia, Atmos. Chem. Phys., 12, 271–285, https://doi.org/10.5194/acp-12-271-2012, 2012.
Lin, P., Huang, X.-F., He, L.-Y., and Yu, J. Z.: Abundance and size
distribution of HULIS in ambient aerosols at a rural site in South China, J.
Aerosol Sci., 41, 74–87, https://doi.org/10.1016/j.jaerosci.2009.09.001,
2010.
Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C.,
Legrand, M., Kasper-Giebl, A., Handler, M., Limbeck, A., Simpson, D., and
Preunkert, S.: Seasonal trends and possible sources of brown carbon based on
2-year aerosol measurements at six sites in Europe, J. Geophys. Res., 122,
D23S18, https://doi.org/10.1029/2006JD008151, 2007.
Maenhaut, W., Raes, N., Chi, X., Cafmeyer, J., and Wang, W.: Chemical
composition and mass closure for PM2.5 and PM10 aerosols at
K-puszta, Hungary, in summer 2006, X-RAY Spectrom., 37, 193–197,
https://doi.org/10.1002/xrs.1062, 2007.
Matos, J. T. V., Freire, S. M. S. C., Duarte, R. M. B. O., and Duarte, A.
C.: Natural organic matter in urban aerosols: comparison between water and
alkaline soluble components using excitation-emission matrix fluorescence
spectroscopy and multiway data analysis, Atmos. Environ., 102, 1–10,
https://doi.org/10.1016/j.atmosenv.2014.11.042, 2015.
Mladenov, N., Lopez-Ramos, J., McKnight, D. M., and Reche, I.: Alpine lake
optical properties as sentinels of dust deposition and global change,
Limnol. Oceanogr., 54, 2386–2400,
https://doi.org/10.4319/lo.2009.54.6_part_2.2386, 2009.
Mladenov, N., Sommaruga, R., Morales-Baquero, R., Laurion, I., Camarero, L.,
Diéguez, M. C., Camacho, A., Delgado, A., Torres, O., Chen, Z., Felip,
M., and Reche, I.: Dust inputs and bacteria influence dissolved organic
matter in clear alpine lakes, Nat. Commun., 2, 405,
https://doi.org/10.1038/ncomms1411, 2011.
Panetta, R. J., Ibrahim, M., and Gélinas, Y.: Coupling a
high-temperature catalytic oxidation total organic carbon analyzer to an
isotope ratio mass spectrometer to measure natural-abundance δ13C-dissolved organic carbon in marine and freshwater samples, Anal.
Chem., 80, 5232–5239, https://doi.org/10.1021/ac702641z, 2008.
Park, S. S. and Son, S.-C.: Relationship between carbonaceous components and
aerosol light absorption during winter at an urban site of Gwangju, Korea,
Atmos. Res., 185, 73–83, https://doi.org/10.1016/j.atmosres.2016.11.005,
2017.
Park, S. S., Kim, Y. J., Cho, S. Y., and Kim, S. J.: Characterization of
PM2.5 aerosols dominated by local pollution and Asian dust observed at
an urban site in Korea during aerosol characterization experiments
(ACE)-Asia project, J. Air Waste Manage., 57, 434–443, https://doi.org/10.3155/1047-3289.57.4.434, 2007.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung,
C., and Winker, D.: Warming trends in Asia amplified by brown cloud solar
absorption, Nature, 448, 575–578, https://doi.org/10.1038/nature06019,
2007.
Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiker, A.
C., Sullivan, R. C., Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue,
N. M., and Robinson, A. L.: Brownness of organics in aerosols from biomass
burning linked to their black carbon content, Nat. Geosci., 7, 36940,
https://doi.org/10.1038/ngeo2220, 2014.
Seinfeld, J. H., Carmichael, G. R., Arimoto, R., Conant, W. C., Brechtel, F.
J., Bates, T. S., Cahill, T. A., Clarke, A. D., Doherty, S. J., Flatau, P.
J., Huebert, B. J., Kim, J., Markowicz, K. M., Quinn, P. K., Russell, L. M.,
Russell, P. B., Shimizu, A., Shinozuka, Y., Song, C. H., Tang, Y., Uno, I.,
Vogelmann, A. M., Weber, R. J., Woo, J.-H., and Zhang, X. Y.: ACE-ASIA:
Regional climatic and atmospheric chemical effects of Asian dust and
pollution, B. Am. Meteorol. Soc., 85, 367–380, 2004.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter
fluorescence with parallel factory analysis: a tutorial, Limnol. Oceanogr.
Meth., 6, 572–579, https://doi.org/10.4319/lom.2008.6.572, 2008.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, Amer. Meteor. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, J.,
and Querol, X.: Chemical characterization of humic-like substances (HULIS)
in PM2.5 in Lanzhou, China, Sci. Total Environ., 573, 1481–1490,
https://doi.org/10.1016/j.scitotenv.2016.08.025, 2016.
Taylor, S. R. and McLennan, S. M.: The geochemical evolution of the
continental crust, Rev. Geophys., 33, 241–265,
https://doi.org/10.1007/s10201-006-0194-9, 1995.
Troyer, I. D., Bouillon, S., Barker, S., Perry, C., Coorevits, K., and
Merckx, R.: Stable isotope analysis of dissolved organic carbon in soil
solutions using a catalytic combustion total organic carbon analyzer-isotope
ratio mass spectrometer with a cryofocusing interface, Rapid Commun. Mass
Spectrom., 24, 365–374, https://doi.org/10.1002/rcm.4403, 2010.
Tsukuda, S., Sugiyama, M., Harita, Y., and Nishimura, K.: Atmospheric bulk
deposition of soluble phosphorus in Ashiu Experimental Forest, Central
Japan: source apportionment and sample contamination problem, Atmos.
Environ., 39, 823–836, https://doi.org/10.1016/j.atmosenv.2004.10.028,
2005.
Twardowski, M. S., Boss, E., Sullivan, J. M., and Donaghay, P. L.: Modeling
the spectral shape of absorbing chromophoric dissolved organic matter, Mar.
Chem., 89, 69–88, https://doi.org/10.1016/j.marchem.2004.02.008, 2004.
Voliotis, A., Prokeš, R., Lammel, G., and Samara, C.: New insights on
humic-like substances associated with wintertime urban aerosols from central
and southern Europe: Size-resolved chemical characterization and optical
properties, Atmos. Environ., 166, 286–299,
https://doi.org/10.1016/j.atmosenv.2017.07.024, 2017.
Wozniak, A. S., Bauer, J. E., and Dickhut, R. B.: Characteristics of
water-soluble organic carbon associated with aerosol particles in the
eastern United States, Atmos. Environ., 46, 181–188,
https://doi.org/10.1016/j.atmosenv.2011.10.001, 2012.
Yan, G. and Kim, G.: Dissolved organic carbon in the precipitation of Seoul,
Korea: Implications for global wet depositional flux of fossil-fuel derived
organic carbon, Atmos. Environ., 59, 117–124,
https://doi.org/10.1016/j.atmosenv.2012.05.044, 2012.
Yan, G. and Kim, G.: Sources and fluxes of organic nitrogen in precipitation
over the southern East Sea/Sea of Japan, Atmos. Chem. Phys., 15, 2761–2774,
https://doi.org/10.5194/acp-15-2761-2015, 2015.
Yan, G. and Kim, G.: Speciation and sources of brown carbon in precipitation
at Seoul, Korea: Insights from excitation-emission matrix spectroscopy and
carbon isotopic analysis, Environ. Sci. Technol., 51, 11580–11587,
https://doi.org/10.1021/acs.est.7b02892, 2017.
Yan, G., Cho, H.-M., Lee, I., and Kim, G.: Significant emissions of
210Po by coal burning into the urban atmosphere of Seoul, Korea, Atmos.
Environ., 54, 80–85, https://doi.org/10.1016/j.atmosenv.2012.02.090, 2012.
Zepp, R. G., Sheldon, W. M., and Moran, M. A.: Dissolved organic
fluorophores in southeastern US coastal waters: correction method for
eliminating Rayleigh and Raman scattering peaks in excitation-emission
matrices, Mar. Chem., 89, 15–36,
https://doi.org/10.1016/j.marchem.2004.02.006, 2004.
Short summary
We found significant seasonal variations in optical and chemical properties of organic aerosols in the urban region and changes in
photo-resistivity of light-absorbing organic aerosols (e.g., brown carbon) owing to the high UV radiation in the atmosphere. Our results suggest that photochemical degradation plays a significant role in light-absorbing organic aerosol abundances and might be an important removal mechanism of
light-absorbing aerosols in the atmosphere.
We found significant seasonal variations in optical and chemical properties of organic aerosols...
Altmetrics
Final-revised paper
Preprint