Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 2637–2665, 2020
https://doi.org/10.5194/acp-20-2637-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 2637–2665, 2020
https://doi.org/10.5194/acp-20-2637-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Mar 2020

Research article | 04 Mar 2020

An evaluation of global organic aerosol schemes using airborne observations

Sidhant J. Pai et al.

Data sets

All Data from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) NASA Airborne Mission G. Chen https://doi.org/10.5067/SUBORBITAL/ARCTAS2008/DATA001

ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols S. C. Wofsy, S. Afshar, H. M. Allen, et al. https://doi.org/10.3334/ORNLDAAC/1581

DC3 Field Campaign Data from DC-8 aircraft DC3 Science Team https://doi.org/10.5067/AIRCRAFT/DC3/DC8/AEROSOL-TRACEGAS

FRAPPE FRAPPE Science Team https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?C130=1

KorUS-AQ Airborne Mission G. Chen https://doi.org/10.5067/SUBORBITAL/KORUSAQ/DATA01

SEAC4RS Field Campaign Data SEAC4RS Science Team https://doi.org/10.5067/AIRCRAFT/SEAC4RS/AEROSOL-TRACEGAS-CLOUD

GoAmazon data GoAmazon Science Team https://www.arm.gov/research/campaigns/amf2014goamazon

OP3 OP3 Science Team http://data.ceda.ac.uk/badc/op3

EUCAARI EUCAARI Science Team http://data.ceda.ac.uk/badc/appraise/data/adient

ARCPAC ARCPAC Science Team https://esrl.noaa.gov/csd/groups/csd7/measurements/2008ARCPAC/P3/DataDownload

CalNex CalNex Science Team https://esrl.noaa.gov/csd/groups/csd7/measurements/2010calnex/P3/DataDownload

SENEX SENEX Science Team https://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/P3/DataDownload

Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON) S. Martin, F. Mei, L. Alexander, P. Artaxo, H. Barbosa, M. J. Bartholomew, T. Biscaro, P. Buseck, D. Chand, J. Comstock, M. Dubey, A. Godstein, A. Guenther, J. Hubbe, K. Jardine, J.-L. Jimenez, S. Kim, C. Kuang, A. Laskin, C. Long, S. Paralovo, T. Petaja, H. Powers, C. Schumacher, A. Sedlacek, G. Senum, J. Smith, J. Shilling, S. Springston, M. Thayer, J. Tomlinson, J. Wang, and S. Xie https://doi.org/10.5439/1346559

Model code and software

geoschem/geos-chem: GEOS-Chem 12.1.1 (Version 12.1.1) International GEOS-Chem User Community https://doi.org/10.5281/zenodo.2249246

Publications Copernicus
Download
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA)...
Citation
Final-revised paper
Preprint