Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 15285–15295, 2020
https://doi.org/10.5194/acp-20-15285-2020

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 20, 15285–15295, 2020
https://doi.org/10.5194/acp-20-15285-2020

Research article 09 Dec 2020

Research article | 09 Dec 2020

Weaker cooling by aerosols due to dust–pollution interactions

Klaus Klingmüller et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Klaus Klingmueller on behalf of the Authors (08 Oct 2020)  Author's response    Manuscript
ED: Publish as is (20 Oct 2020) by Yves Balkanski
Download
Short summary
Particulate air pollution cools the climate and partially masks the greenhouse warming by reflecting sunlight and enhancing the reflection by clouds. The intensity of this cooling depends on interactions between pollution and desert dust within the atmosphere. Our simulations with a global atmospheric chemistry-climate model indicate that these interactions significantly weaken the cooling.
Altmetrics
Final-revised paper
Preprint